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Attributionmethods explaining a particular decision for a given convolutional neural network (CNN)have gained
a lot of attention over the last few years. Among them, approximationmethods of Shapley values are considered
to be better ways of assigning attribution scores such that several desirable axioms are satisfied. Nevertheless,
these attribution scores may still be misleading or inaccurate due to the inappropriate selection of a baseline
which is necessary to apply Shapley values to CNNs. Previous baseline studies have focused on developing a ge-
neric baseline selectionmethod for all approximationmethods; however, wefind that designing a baseline under
the essence of the selected approximation method itself produces better results than generic ones. With this ob-
servation, we propose two primal baseline properties for Aumann–Shapley-based attributions and design a gen-
eral objective function of generating a baseline iteratively by gradient descent. To increase efficiency, we further
reduce the objective function into a quadratic optimization problem where the gradients only need to be calcu-
lated once. We show that our method produces better attribution results than several state-of-the-art baseline
selections and attribution methods on both qualitative and quantitative experiments.
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1. Introduction

Inducing a convolutional neural network (CNN) to learn important
features from a large-scale image dataset is a powerful paradigm, yet
this introduces a challenging interpretability problem of explaining
complex network behaviors [1–3]. In the realm of interpretability, attri-
bution methods aiming at explaining a particular output by assigning a
scalar attribution score to each feature of a CNN have drawn an increas-
ing attention over the past few years [4]. Specifically, for a particular
output indexedwith c, the goal of attributionmethods is to compute at-
tribution scores Rc ∈ ℝW×H×K in a hidden layer, whereW,H,K are width,
height, and channel number of feature maps in a hidden layer.

To further improve the reliability of attribution explanations in the-
oretical, some researchers endorsed an axiomatic approach [5–9]. Along
with the axiomatic approach, the studies in game theory suggest
Shapley values [10] as a unique way of assigning attribution scores
such that desirable axioms (see Appendix A for details) can be satisfied
[8]. The original Shapley method calculates the averaged marginal con-
tribution of a feature under all possible feature coalitions to generate
its attribution score. Unfortunately, computing the exact Shapley values
is an NP-hard problem and only feasible for less than 20 features [5]. To
hi).
compute Shapley values in polynomial time, many approximation
methods have been proposed, e.g., Aumann–Shapley (AS) method [11]
and several expectation estimatingmethods. But, the methods estimat-
ing value function by conditional or interventional expectation may
produce unreliable attributions [12]. Therefore, we select Aumann–
Shapley method, which approximates Shapley values using the perfect
sampling assumption, to calculate neuron attributions.

Although the idea of Aumann–Shapley method can be directly ap-
plied to calculate neuron attributions, the definition of marginal contri-
butions requires a baseline A, also named “reference” [5], to simulate
themissingness of features. Depending on the choice of baseline, the at-
tribution results may change dramatically, because a Shapley-based ex-
planation is essentially a function of difference between features and
the baseline. Currently, Zero [9,13,14], Expectation [6], Blurring image
[15], Uniform, Gaussian, and MaxDistance [16], and Neutral [17] base-
lines have been proposed as generic baseline selections. However, a ge-
neric baselinemeans that the essence of an approximationmethod itself
cannot be taken into account. Specifically, Aumann–Shapleymethod in-
herently requires a baseline that only expresses the absence of features
related to the particular output (see Sec. 4 for details). A baseline not
targeted with the particular output will introduce misleading noise
into Aumann–Shapley explanations. For example, attribution heatmaps
may be disturbedby the neuron features irrelevant to theparticular out-
put, and therefore the target image region cannot be highlighted accu-
rately.
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In this context, we propose two baseline properties based on the es-
sence of Aumann–Shapley method itself and demonstrate the signifi-
cant influence of a baseline on calculating attributions. More
specifically, this paper presents the following contributions.

1) We propose two primal baseline properties based on the definition
of Aumann–Shapley values in CNNs, i.e., attribution baseline ought
to express the feature missingness of the particular output and
ought to approach original features.We verify that baselines not sat-
isfying these properties lead to misleading and degenerate attribu-
tion results through an experiment (Sec. 5.2)

2) Based on the characteristics of CNN neuron features in spatial and
channel dimensions, we design two objective functions according
to the baseline properties to generate spatial and channel masks by
gradient descent, respectively. Then, we use the optimized masks
to modify the original feature maps to generate the output-
targeted baseline.

3) To decrease baseline calculation consumption,we propose to reduce
the objective function into a quadratic optimization problem to cal-
culate two masks with computing gradients only once. The faster
calculating method is much more efficient in practice and also sat-
isfies the baseline properties (Sec. 5.1). We further show that our
method produces better results both qualitatively and quantitatively
than several state-of-the-art baseline selections (Sec. 5.2) and attri-
bution methods (Sec. 5.3).

2. Related work

2.1. Baseline selections

In practice, since the concept of feature missingness is domain-
specific, the baseline definition is also varied to better represent the ab-
sence of information. Commonly, making the output score drop to zero
or drop significantly is used to indicate feature missingness. For most
domains, the zero baseline is reasonable to some degree [9,13,14].
Given a multilayer nonlinear network, without considering the influ-
ence of additive biases and all nonlinear activation functions, the zero
baseline definitely results in a zero output. Although the output is
often not zero because additive biases are usually not zero in practice,
the zero baseline still can be considered as a canonical choice. Intui-
tively, when features are image pixels, a zero baseline is just a black or
gray image that is able to represent the lack of features to humans. In
image domain, generating baseline by blurring image is also widely il-
lustrated [15,16]. However, for other domains, a baseline still needs to
be selected with respect to the input instance at hand. For example, a
zero baseline may not be able to represent the feature missingness in
a hidden layer where the neuron value is a real number.

In addition to the zero baseline, several sophisticated attribution
baseline selections have been proposed. Lundberg et al. [6] designed Ex-
pectation baseline that is calculated by averaging over randomly sam-
pled feature coalition from the training set. However, sample
unbalanced problem and the bias of the dataset itself can potentially
lead to a serious decline in the performance of Expectation baseline.
Their team further discussed effects of different types of baselines on
CNNs and proposed Uniform noise baseline, Gaussian noise baseline,
and MaxDistance baseline [16]. The MaxDistance baseline means find
the farthest features in 2-norm but still in the original feature range. Re-
cently, Izzo et al. [17] proposed Neutral baseline for multiple layer
perceptrons (MLPs) by finding a point at which baseline values are de-
termined by the network output being either above or below it. The
major difference from other previous studies is that Neutral baseline
does not attempt to reduce the output score to zero or significantly to
represent feature missingness, but to find a decision boundary to ex-
press the absence of information. As all these considerations are derived
with a clear objective, we believe that they are all reasonable for design-
ing a baseline selection method.
2

With the recent researchof taxonomyof baselinemethods [18], base-
lines can be divided into two types, i.e., static and dynamic baselines. Spe-
cifically, a baseline is static if it is the same for any input instance.
Otherwise, a baseline is dynamic. Simply, a static baseline provides the
same information for every observation, whereas a dynamic baseline
provide different information. Thus, Zero [9,13,14], Expectation [6], and
Neutral [17] baselines are static. Blurring image [15], Uniform, Gaussian,
andMaxDistance [16] baselines are dynamic. Comparedwith static base-
lines, dynamic one ismore flexible and easier to satisfy the requirements
of Shapley approximationmethods. On the other hand, all baseline selec-
tion methods mentioned above are trying to achieve a generic baseline;
however, the essence of the Shapley approximationmethod is not taken
into account. In fact, researchers recently expressed concerns about the
appropriateness of baseline selection methods [18,19]. Therefore, the
baseline selection should be implemented dynamically based on the es-
sence of the attribution method itself.

2.2. Attribution methods

There has been a significant body of literature focusing on interpret-
ing behaviors of deep neural networks. We focus on methods that can
be applied to different network architectures and that are not restricted
at the certain feature type. Although there are several criteria to catego-
rize attribution methods, we discuss them according to whether they
are based on Shapley values.

Simonyan et al. [20] utilized saliency information as the explanation
of the particular output (Saliency). Shrikumar et al. [21] introduced an
element-wise multiplication between the signed gradient and the
input (GradxInput) as contributions. Smilkov et al. [22] added noise
into original input and average the corresponding gradients to produce
an explanation (SmoothGrad). Although vanilla gradients provide infor-
mation about which features can be locally perturbed the least in se-
quence to maximally change the particular output, it does not help to
compute the marginal contribution of a feature. To overcome this limi-
tation, other methods are characterized by designing different
backpropagation rules for different operations. Bach et al. [23] proposed
Layer-wise Relevance Propagation (LRP) and Montavon et al. [7] built
upon LRP to further propose deep Taylor decomposition. Shrikumar
et al. [14,21] proposed Deep Learning Important Features (DeepLIFT)
Rescale and RevealCancel. However, all above methods break at least
one of the self-evident axioms as discussed in the studies [5,9].

Shapley values have been proved to satisfy several fundamental ax-
ioms [6,9,24]. Many approximation methods have been proposed to es-
timate Shapley values in polynomial time. Castro et al. [25] sampled a
subset of all possible coalitions of features to approximate Shapley
values. Ghorbani and Zou [26] sampled a subset of highly activated chan-
nels to improve sampling-based estimation methods. Although these
random-samplingmethods can handle the channel-level attribution cal-
culation, we find they are still slow for neuron-level case, because the
number of neurons is about hundreds of times that of channels.
Sundararajan et al. [9] proposed Integrated Gradients (IntGrad) that
can be regarded as computing Aumann–Shapley values using the zero
baseline with some path modifications. Dhamdhere et al. [27] applied
IntGrad to calculate neuron-level attributions. Although these attribution
methods have better theoretical properties, they did not consider the sig-
nificant influence of the baseline selection in CNNs. Chen et al. [28] pro-
posed Deep Shapley Additive Explanations (DeepSHAP) to estimate
Shapley valueswith a layer-wise chain rule; however, the generalization
of the chain rule on Shapley values is not yet clear.

3. Neuron attributions

3.1. Aumann–Shapley values in CNNs

In game theory, Aumann–Shapley values are used to quantify the
contribution of each player to the particular result when all players
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participate in a game. The basic idea of Aumann–Shapley values can be
extended to CNNs to compute neuron attributions. Consider a feed-
forward CNN f that takes an image as input and produces feature
maps A ∈ ℝW×H×K in the ℓth layer. The particular output fc(A) is
generated when the feature maps are forwarded to the network and
all previous layers are ignored. The original idea of Aumann–Shapley
method is to evaluate marginal contribution on a “perfect” sample of
the population of all neurons:

Rc
i,j,k ¼

Z 1

t¼0
f c 1 � tð ÞAc þ tA þ ΔAi,j,k

� �

� f c 1 � tð ÞAc þ tA
� �

dt,
ð1Þ

where 1 � tð ÞAc þ tA þ ΔAi,j,k can be considered as the coalition ob-
tained after the neuron Ai,j,k joins which can be regarded as the
heuristic form of the diagonal formula. As t increases, the value
increases diagonally from the baseline to the original feature maps.

ΔA ¼ A � A
c
, where A

c
is the baseline related to the particular output

c. Note that, ΔAi,j,k is not added to the tensor as a scalar, but is added
to the corresponding value of the tensor. Then, this formula can be
expanded by the Taylor series:

f c 1 � tð ÞAc þ tA þ ΔAi,j,k

� �
¼ f c 1 � tð ÞAc þ tA

� �

þΔAi,j,k

∂f c 1 � tð ÞAc þ tA
� �

∂Ai,j,k
þ O ΔAi,j,k

� �2h i
,

ð2Þ

where the remainder O[(ΔAi, j, k)2] can be minimized when ΔAi,j,k

approaches 0. By substituting the above Taylor expansion into Eq. (1),
the most common definition of Aumann–Shapley values can be ob-
tained, i.e.,

Rc
i,j,k ¼ ΔAi,j,k

Z 1

t¼0

∂f c 1 � tð ÞAc þ tA
� �

∂Ai,j,k
dt, ð3Þ

where Aumann–Shapley value Ri, j, k
c is the gradient integral along this

straight-line path. However, we cannot achieve the integral directly in
neural networks because continuous gradients are not available. In ad-
dition, vectorized execution is necessary for efficiency, especially for
tens of thousands of neurons in a hidden layer.

3.2. Neuron attribution calculation

To practically implement the attribution calculation in CNNs, we
discretize the continuous integral using Gauss–Legendre quadrature
and vectorize Eq. (3) as:

Rc ¼ ΔA∑
T

t¼1

1

1 � ξ2t
� �

P0T ξtð Þ½ �2
∂f c 1=2 1 � ξtð ÞAc þ 1þ ξtð ÞA

� �� �
∂A

, ð4Þ

where T is the number of sample points in Gauss–Legendre quadra-
ture for approximating the definite integral. ξt is the quadrature
point of the Tth Legendre polynomial. PT′ is the derivative of
Legendre polynomials at the sample point. With a baseline and
Eq. (4), we can calculate neuron attribution scores Rc by cumulating
gradients at all points. Due to errors of the discretization, Eq. (4)
prevents attribution scores from perfectly satisfying Axiom 1
(Appendix A). But we find that, for most cases, resulting attribution
scores roughly add up to the output score under the number of
sample points T = 50, i.e., Axiom 1 can be approximately satisfied
with the discrete calculation.

There are often hundreds of features along the channel which are
difficult for humans to understand. To make attribution scores
human scale, we could discard channel information and only retain
3

the spatial distribution of features by generating an attribution inten-
sity map:

Hc ¼ ∑
K

k
Rc
:,:,k, ð5Þ

whereHc ∈ℝW×H could be further normalized and resized to generate a
heatmap that shows from which image regions features related to the
particular output are extracted.

4. Attribution baseline

We first define two baseline properties based on the essence of
Aumann–Shapley method itself. There are several reasonable defini-
tions for feature missingness, such as making the output score drop to
zero, drop significantly, or drop to a decision boundary. In our proposal,
we use the first definition, i.e., zero output, to represent feature
missingness.

Property 1. Attribution baseline ought to express feature missingness

of the particular output, i.e., f c A
c

� �
≈0.

According to the efficiency axiom (see Appendix A for detail infor-
mation) of Aumann-Shapley values, it would be natural that the net-
work output is zero given a baseline input which simulates the
missingness of features related to the particular output. In such cases,
the attribution computation given in Eq. (4) can be regarded as distrib-
uting the original particular output to the neuron features. This allows
us to interpret the attributions as feature contributions of the particular
output. The property can also be interpreted as the neutrality to the par-
ticular output. Only a baseline that can convey a complete absence of
particular output features; then, when it is applied to compute neuron
attributions, the integration (Eq. (4)) can “perfectly” sample from no
feature to complete features. In addition, for most CNNs, a zero output
can be produced by modifying the original feature maps, which also
makes the baseline calculation easier to implement.

Property 2. Attribution baseline values ought to approach original fea-

ture values, i.e., A
c
i,j,k≈Ai,j,k.

As an extension of Shapley values, Aumann–Shapley values are orig-
inally designed for infinite games where each value of the baseline ap-
proaches the original feature value. We can find that from Eq. (2)
where ΔAi,j,k implicitly affects the error term when calculating
attribution scores. The basic idea of Aumann–Shapley values can be ex-
tended to CNNs to compute neuron attributions provided that the gap
between the baseline and the original feature is minimized. For CNNs,
we find that a big gap cause the attributions to be disturbed by neurons
correlated with other outputs. This property can also be considered as
the ability of decoupling output correlations, i.e., the baseline should

not affect the non-targeted outputs: f c0 A
c

� �
≈f c0 Að Þ, c' ≠ c. Decoupling

correlations between the particular output and the other outputs allows
us to reduce the impact of the output correlations on attribution scores.
Although an exact decoupling is difficult due to the prohibitively large
search space which consists of tens of thousands of neurons in a
convolutional layer, our attribution property implicitly provides the
decoupling capability. Because the high similarity between the baseline
and the original feature maps could minimize the baseline's influence
on non-targeted outputs.

We can find that Property 1 can be satisfied by zero and noise base-
lines, but none of the baselines stated in Sec. 2.1 can satisfy Property 2.
To generate baselines satisfying these inherent requirements of
Aumann–Shapley attributions, we next propose two baseline selection
methods, i.e., optimization baseline and quadratic approximation base-
line.
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4.1. Optimization baseline

The baseline properties can guide the definition of selecting
baselines–a baseline calculation method ought to retain all possible
neurons that are not strictly correlated with the particular output and
to remove the remaining neurons. Naturally, the baseline calculation
method can be formulated as a subset selection problem:

S∗ ¼ arg min S f c A Sð Þð Þ� �2 þ λ jSj � WHKð Þ2, ð6Þ

where S is a subset of the set of all neurons in the layer. The score
f c A Sð Þð Þ is the particular output if we only consider a part of neurons
in the set S. The operator |⋅| means the cardinality of a set. Theparameter
λ is used to balance the influence of similarity between the original fea-
ture maps and the baseline. S∗ is used to indicate the neurons to be
retained. For the objective function, the first term is designed for
Property 1 and the second term is for Property 2. Although the subset
selection is intuitive, solving it is NP-hard and clearly prohibitive for
thousands of neurons in CNNs.

Inspired by research of adversarial samples [29] and Lasso regression
[30], we transform the discrete problem into a continuous regularized
energy minimization task. Neuron features of CNNs have separate and
unique characteristics along the spatial and channel dimensions. In
the spatial dimension, each neuron in one feature map corresponds to
the image region whose size is the receptive field of the layer. Along
the channel dimension, different neurons definitely represent different
features, because each channel is determined by the operation of a 3D
convolutional kernel. According to these two characteristics, we design
the objective function from the two dimensions of space and channel
separately, so as to reduce the difficulty of the optimization in Eq. (6).
In particular, we formulate Eq. (6) as:

Sc∗ ¼ arg min S f c S⊙Að Þ� �2 þ λ‖s � 1
!
‖22, ð7Þ

zc∗ ¼ arg min z f c z⊙Að Þ� �2 þ μ‖z � 1
!
‖22, ð8Þ

where the spatial mask matrix S ∈ [0,1]W×H can be applied to the origi-
nal feature maps to remove features spatially corresponding to the par-
ticular output. Note that, each element of the mask is a continuous
weight. Similarly, the channel mask vector z ∈ [0,1]K is applied to the
channel dimension of the feature maps to remove channel features.
The operator ⊙ means Hadamard product. For the Hadamard product,
the mask should be broadcast to the same size as the tensor for
element-wise multiplication. The parameter λ and μ is used to balance
the scale of two terms. For the simplicity of the following equations,
we use the vector s = [S1, 1,…,SW, H]T to denote the flattened S. 1

!
is a

vector of ones. The operator ‖⋅‖2 means 2-norm of a vector.

With the resulting masks, the optimization baseline A
c∗
can be gen-

erated by element-wisely multiplying original feature maps and the
generated mask. In real implementation, we broadcast two masks to
the size of feature maps and access element-wise minimum of two
masks for the final multiplication with original feature maps.

4.2. Quadratic approximation baseline

Optimizing Eqs. (7) and (8) is computationally expensive because
the gradient-based optimization is performed iteratively where we
have to compute the gradients at each iteration to update the masks.
The lower layer we select, the longer one iteration takes to compute
the gradients according to the back-propagation process. To solve this
problem, we approximate Eqs. (7) and (8) as quadratic optimization
problems where we compute the gradients only once.

The approximation process of Eqs. (7, 8) are very similar. For the
sake of simplicity, we only discuss one of them. Eq. (7) can be rewritten
as a multivariate function, i.e. fc(S ⊙ A) = fc(S1, 1A1, 1, :,…,SW, HAW, H, :).
4

Then, we use the first order Taylor decomposition to decompose fc(S ⊙
A) into a linear form: fc(S⊙A)≈ fc(A)+∑i, j(Si, j− 1)g(Ai, j, :⊙ ∂ fc/∂Ai,

j, :|A),where g is a function thatmaps the Hadamard product betweenAi,

j, : and the gradient thereof to a scalar. By substituting this
decomposition into Eq. (7), the objective function can be
approximated with a quadratic optimization:

sc∗ ¼ arg min ssT qqT þ λI
� �

s � 2λs ⋅ 1
! þ 2 f c Að Þ � q

� �
s ⋅ q, ð9Þ

where q=[g(A1, 1, :⊙ ∂fc/∂A1, 1, :|A),…,g(AW, H, :⊙ ∂fc/∂AW, H, :|A)]T. The
sum of q is q. I is an identity matrix of size WH. The vector s = [S1,
1,…,SW, H]T is generated by flattening S. The operator “·” is a dot
product between two vectors. For multivariate Taylor expansion, the
function g can be a summation function. The mask vector zc∗ in Eq. (8)
can be calculated analogously.

The original iterative objective function is reduced to a quadratic op-
timization problem that can produce an optimal solution, i.e., a unique
baseline. There are many numerical optimization algorithms can be
used to solve a quadratic optimization problem such as L-BFGS-B [31]
with a box constrain range from 0 to 1. Solving Eq. (9) only needs to cal-
culate the gradients between the particular output and feature maps
once that is much faster than solving Eq. (7). With the baseline, we
can calculate neuron attributions Rc and generate a heatmap in the cur-
rent layer to understand the network behavior.

5. Experiments

The first four experiments are validations of our proposed method:
1) evaluation of baseline properties (Sec. 5.1), 2) comparison to other
baseline selections (Sec. 5.2), 3) comparison to other attribution
methods (Sec. 5.3), and 4) pointing game evaluation (Sec. 5.4). Then,
we implement two useful applications of neuron attributions:
5) attribution-based pruning method (Sec. 5.5) and 6) network
repairing (Sec. 5.6).

The experiments are conducted using GoogLeNet [32] pre-trained
on the ImageNet [33] datasetwhich has become an important backbone
network in a variety of vision tasks. The iterative number T in Eq. (4) is
set at 50, becausewefind that it is sufficient tomake the attributions ap-
proximately add up to the particular output score in all tested cases, i.e.,
roughly satisfying the “efficiency” axiom in AppendixA. One difficulty in
generating a quadratic approximation baseline is to balance the differ-
ent terms. Basically, these parameters (i.e., λ and μ) can be selected in
such a manner that, for reasonable mask size, the regularization term
is about 1∕10 of the score term. In our experiments, we set the param-
eters λ = 0.08 min (q2, fc(A)2)/(WH) for the spatial mask; μ = 0.1 min
(q2, fc(A)2)/K for the channel mask. Our experiments are implemented
on AMDRyzen71700X 8-Core CPU andnVIDIA TitanRTXGPU. For base-
line assessment and attribution evaluation, we randomly select 1000
images from the ImageNet validation dataset.

Fig. 1 shows images used for visually demonstrating experimental
results that were downloaded from https://unsplash.com/ and https://
github.com/distillpub/, licensed under Creative Commons Attributions
CC-BY 4.0. Classification logits and class names generated by GoogLeNet
are shown in Table 1.

5.1. Evaluation on baseline properties

According to the discussion in Sec. 4, the baseline of Shapley values
should satisfy two properties. In this section, we evaluate the extent to
which our baselines, i.e., optimization baseline (OPT) and quadratic ap-
proximation baseline (QA), can satisfy the two baseline properties. We
first calculate baselines of all tested layers (i.e., from the mixed3a to
mixed5b of GoogLeNet) using the randomly selected 1000 images
from ImageNet validation dataset. The optimization baselines are gen-
erated using Adam optimizer [34]. We early stop updating when the
loss variation less than 5% within 10 epochs. Quadratic approximation

https://unsplash.com/
https://github.com/distillpub/
https://github.com/distillpub/


Fig. 1. Images used for visual evaluation.
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baselines are calculated using L-BFGS-B algorithm [31]. The average
runtime of generating baselines and the standard deviations of runtime
are shown in Table 2. The runtimedepends on the depth of layer and the
number of features. We can find that generating a QA baseline is much
faster than generating an OPT baseline either on CPU or GPU.

For Property 1 (i.e., the particular output approaches zero), we for-
ward the calculated baselines into GoogLeNet to produce the scores of
the particular outputs. The mean values of output scores of QA and
OPT are 0.01 and 0.00, respectively. Both QA and OPT baselines can pro-
duce near-zero scores to represent the feature missingness indicating
the satisfaction of Property 1.

For Property 2 (i.e., the baseline approaches the original feature), we
first calculate the mean values of spatial and channel masks, where 0
means completemasking and 1means complete preservation of feature
maps. As shown in Table 3, we find both of QA and OPT channel masks
can keep most features, because both mean values are higher than 0.7.
For spatial masks, the mean value of the OPT mask is 0.08 higher than
that of QA, indicating that the OPT spatial mask is better. Overall, all
these masks can keep more than 50% of features on average, which
means that the baselines generated using these masks can effectively
approach the original feature maps indicating the satisfaction of
Property 2. To give an intuition of the relationship between resulting
baselines and original feature maps, we also calculate Pearson correla-
tion coefficients (PCCs) between original feature maps and baselines,
as shown in Table 4. For the zero vector, the machine epsilon was
added. The OPT baseline is closer to the original feature maps, but the
correlation of QA also achieves 0.74. The correlation scores of QA and
OPT numerically demonstrate that both baselines can reasonably ap-
proach the original feature maps.

5.2. Comparison to other baseline selections

In this section, we compare Aumann–Shapley (AS) attribution re-
sults generated using eight choices for neuron attribution baselines,
i.e., Uniform Noise [16], Gaussian Noise [16], Zero [9,13,14],
MaxDistance [16], Expectation [6], Neutral [17], QA (ours), and OPT
(ours) baselines. For Neutral baselines, we find that top-1 outputs of
GoogLeNet are mostly distributed between 0.5 and 0.7. But the original
setting of the neutrality value of their method is 0.5 that may be not
suitable for the decision boundary of GoogLeNet. Therefore, to better
satisfy the attributes of separating decision boundary defined in [17],
we set the neutrality value at 30% of the mean score of one class,
where output scores are calculated using the validation set. For other
compared baselines, we follow the original ideas to reimplement them.

Without satisfying the two properties, the attribution explanations
may be misleading, because attributions are affected by neurons not
Table 1
Class information of images in Fig. 1.

Image Fig. 1(a) Fig. 1(b) F

Top class/logit Tabby/18.22 Kelpie/12.36 T
Other class/logit Vase/7.11 Bike/11.31 B
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actually related to the particular output, especially in the higher layers
(e.g., mixed4 andmixed5),where featuremaps have a significant spatial
correlationwith the target region. Fig. 2 shows the heatmaps generated
using Aumann–Shapley attributions with different baselines. We can
find that larger scores are assigned to some neurons corresponding to
irrelevant regions using other baselines. These misleading explanations
prevent us from truly understanding the network behaviors. For exam-
ple, in the first row of Fig. 2, image regions outside the vase are also
highlighted. Our baselines (i.e., QA and OPT), which satisfy the two
properties, can reduce the interference of irrelevant features, thereby
generating attribution scores that more accurately express the feature
contributions of the particular output.

On the other hand, although attribution heatmaps are consistent
with human intuition, we still cannot conclude that these attribution
scores are veritable and accurate. Because the object cognition from
the perspective of a CNN is very different fromhuman beings. Heatmaps
which agree with the human intuition can only be used as an auxiliary
tool to evaluate attribution results. Therefore, we further run these
methods on two quantitative metrics, i.e., robustness and sensitivity-n
[35,36] which can be applied to evaluate neuron attributions. We do
not select sanity check [37] and remove and retrain (ROAR) [38]metrics
which are widely used for pixel attribution assessments, because they
are difficult to be applied to evaluate neuron attributions.

Robustness metric, also called degradation test [36] or deletion re-
gion representativeness [15], is originally designed to evaluate pixel at-
tributions by counting the change of the target score when pixel values
are replaced with baseline values according to their contributions. This
metric can be directly utilized to evaluate neuron attributions. Given
the attribution scores, the neurons of the feature maps A are ranked.
At each step, the highest ranked neurons in the set S are replaced.
Then, the modified feature maps AS is forwarded into the network to
predict a new classification score of the particular output, where AS
means that the neurons in the set S are replaced by baseline values
while others remain as they are. A larger increase of the changed partic-
ular output score f c Að Þ � f c ASð Þ� �

=f c Að Þ indicates better attribution re-
sults. Since the logit score may be negative, the score variation can be
over 100%. We calculate attribution scores using the 1000 images se-
lected in Sec. 5.1 on their labeled classes. Then, we replace top ranked
WH∕2 neurons at each step until 5% of neurons are replaced based on
the attribution scores. Fig. 3 shows the score changes with all tested
baselines in several layers of GoogLeNet. Our method outperforms
other methods in all layers that means our method can quickly and ac-
curately detect critical neurons. Generally, AS-OPT is slightly better than
AS-QA; however, the optimizationwith gradient descent could be time-
consuming. From the experimental results, we can also find that the
baseline selection indeed have a huge impact on attribution results.
ig. 1(c) Fig. 1(d) Fig. 1(e)

elephone/14.73 Gazelle/20.51 Labrador retriever/11.32
allpoint/8.51 Jeep/6.54 Tiger cat/4.45



Table 2
Runtime comparison between QA and OPT baselines.

QA (CPU) OPT (GPU) OPT (CPU)

Mean runtime (s) 3.92 32.78 141.22
Std of runtime 8.72 18.71 107.11

Table 3
Mean values of generated spatial and channel masks where 0 means complete masking
and 1 means complete preservation of feature maps.

QA Spatial OPT Spatial QA Channel OPT Channel

Mean mask values 0.52 0.6 0.70 0.72
Std of mask values 0.09 0.11 0.08 0.11

Table 4
PCCs between feature maps and baselines.

QA OPT

Mean PCC 0.74 0.87
Std of PCC 0.07 0.05
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Although Aumann–Shapleymethod theoretically satisfies several desir-
able properties as discussed in Appendix A, a baselinewithout consider-
ing the essence of the approximation method could seriously degrade
the attributions.

Sensitivity-n metric is designed to assess relationship between at-
tributions and output scores systematically that can be considered as a
general evaluation of the efficiency axiom (Appendix A). Similar to the
robustnessmetric, although the original sensitivity-n is used to evaluate
the pixel attributions, it can also be applied to evaluate the neuron attri-
butions. Specifically, for any coalitions of neurons of size n, an attribu-
tion method satisfies sensitivity-n if the sum of these n neuron
attributions is equal to the amount of the score variation caused by re-
placing these neurons with the baseline. The attribution scores are
also calculated using the randomly selected 1000 images on their la-
beled classes. For a coalition S of size n, the modified feature maps AS
Fig. 2. Attribution heatmap comparison using Aumann–Shapley attributions with different bas
right: original image, QA (ours), OPT (ours), UniformNoise [16], GaussianNoise [16], Zero [9,13,
targeted classes of these images.
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is generated by replacing these neuron features with baseline values.
Given a coalition S containing n randomly selected indices, sensitivity-
n measures the Pearson correlation coefficient (PCC):

PCC ∑
S
Rc
S, f

c Að Þ � f c ASð Þ
� �

, ð10Þ

where Rc is the neuron attributions. We implement the experiment by
selecting the number of replaced neurons in log-scale between 1 and
95% of all neurons, because our method outperforms other methods
given more than 10% neurons replaced in most layers. For each size n,
we estimate the PCC by randomly sampling 200 coalitions of neurons
in one convolutional layer. Fig. 4 shows the sensitivity-n scores with
all tested attribution methods in several layers of GoogLeNet. To com-
pare sensitivity-n results clearly, we further compute the average of
log-scale sensitivity-n results, as shown in Table 5. These results show
that our method outperforms all tested methods globally. As a system-
atic evaluation metric of the efficiency axiom, these better sensitivity-n
results indicate that ourmethod is able to systematically distribute attri-
butions based on output score variations.

5.3. Comparison to other attribution methods

In this section, we report quantitative experiment evaluating our
method alongside Saliency [20], GradxInput [21], SmoothGrad [22],
EpsilonLRP [23], DeepLIFTRescale, DeepLIFTReveal [14,21], and
DeepSHAP [28] using robustness and sensitivity-n. Although some
methods were originally designed to calculate pixel attributions, they
can be extended to calculate neuron attributions with slight changes.

Robustnessmetric results illustrate that ourmethod can detectmost
contributing neuron features fastest, as shown in Fig. 5. We find the re-
sults in the mixed5b layer that is next to the output layer are nearly
equivalent. Based on the discussion of the influence of network behavior
linearization on attributionmethods [35], this equivalence should be due
to the weak nonlinearity of the sub-network from the last few layers to
the output. The results shown in Fig. 3 and Fig. 5 indicate the decisive in-
fluence of baseline selections on attribution results. Some of AS
elines. Neuron attributions are calculated in the mixed4e layer of GoogLeNet. From left to
14],MaxDistance [16], Expectation [6], andNeutral [17]. The leftmost column indicates the
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attribution scores generated using other baseline selections result in less
robustness thanother attributionmethods,whereasAS attribution calcu-
lation with our baseline outperforms all the other attribution methods.

Sensitivity-nmetric results are shown in Fig. 6 using different attri-
bution methods. Numerical results are shown in Table 6. These results
show that our method outperforms all tested methods except
GradxInput and LRP that perform better if the number of replaced neu-
rons is small. Theoretically, gradient information could better express
the local correlationship between numerical changes of neurons and
output variations than the marginal contributions of Shapley values.
But DeepLIFT and DeepSHAP that are also backpropagation-based do
not produce good sensitivity-n scores.We speculate that theirmodifica-
tions of the backpropagation rule may deteriorate the nature of original
gradients.
Fig. 3. The robustness results of the AS attribution
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Although sensitivity-n can thoroughly evaluate whether the cal-
culated neuron attributions systematically reflect neuron contribu-
tions to the output [35,36], we also find that this may be not a
perfect systematic evaluation metric. The baseline heavily affects
sensitivity-n results, e.g., the sensitivity-n of our method is always
better than others when replacing more than 20% neurons, because
many neurons in our baseline approach the original ones. In addi-
tion, in the last layer mixed5b where the influence from the non-
linear function is minimal, most methods produce attribution
scores that almost satisfy sensitivity-n. However, we cannot assess
the impact of the degree of non-linearity on the sensitivity-n re-
sults, and thus cannot confirm how much the good sensitivity-n re-
sults of different attribution methods are affected by the network
structure.
s with different baselines in different layers.



Fig. 4. The sensitivity-n results of the AS attributions with different baselines in different layers.

Table 5
Sensitivity-n evaluation on different baselines in all layers.

Layers

Methods 3a 3b 4a 4b 4c 4d 4e 5a 5b mean

AS-QA 0.80 0.82 0.83 0.83 0.77 0.78 0.75 0.91 0.97 0.83
AS-OPT 0.82 0.84 0.85 0.83 0.77 0.80 0.74 0.93 0.99 0.84
AS-Uniform 0.65 0.67 0.59 0.60 0.54 0.56 0.62 0.85 0.98 0.67
AS-Gaussian 0.67 0.69 0.71 0.69 0.64 0.66 0.64 0.88 0.98 0.73
AS-Zero 0.67 0.70 0.73 0.69 0.67 0.60 0.64 0.88 0.96 0.73
AS-MaxDistance 0.59 0.62 0.52 0.60 0.57 0.56 0.48 0.75 0.62 0.59
AS-Expectation 0.71 0.72 0.76 0.74 0.69 0.70 0.70 0.91 0.96 0.77
AS-Neutral 0.75 0.75 0.81 0.76 0.75 0.71 0.72 0.93 0.98 0.80
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5.4. Pointing game evaluation

In this section, we implement the pointing game [39] on all tested
methods that evaluate whether attribution scores can correlate with
semantics in input images. Specifically, we generate attribution
heatmaps in the mixed4e layer and count whether the maximum
value in the heatmap can point out the object. The overall accuracy
is the number of successful points over all results. Table 7 shows av-
eraged results for this metric on PASCAL VOC [40] test set and COCO
[41] validation set. As stated in [39], we also conduct the evaluation
over the full data and a subset of difficult images. The experiment re-
sults show our method is competitive in this benchmark especially
8



Fig. 5. The robustness results of the attribution methods in different layers.
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on difficult images, because our proposal is always the fastest at
identifying the most important neurons as discussed in the robust-
ness experiments (Sec. 5.2 and 5.3).

5.5. Attribution-based pruning method

Designing a reasonable CNN structure may be difficult for non-
machine learning experts; therefore, fine-tuning on an open-
sourced and well-designed network is a common choice in practice,
e.g., fine-tuning YOLOv3 [42] to detect mangos in agronomic applica-
tions [43]. The pre-trained YOLO can detect 80 classes of objects
where only apples and oranges are correlated with mangos. Al-
though high accuracy can be achieved by retraining the original
YOLOv3-tiny, it is more useful to find a low-power-consumption
and small-size subnetwork that can detect one class of fruits
9

accurately. Attribution scores can find the critical neurons, thereby
detecting convolutional kernels related to the particular output
class. Thus, we can prune unnecessary kernels based on attribution
scores to get a small network for single class detection which is par-
ticularly useful in orchard applications.

We apply AS-QA to the detection network following the process
discussed in [43] to find kernels correlated with the target class in
each layer. According to the error increases of removing kernels,
the pruning rates of 11 convolutional layers of YOLOv3-tiny are set
to 0, 0, 0, 50, 50, 75, 87.5, 75, 75, 75, and 87.5%, which leads to
91.1% reduction of the entire network size. We freeze the weights
in the first two layers and fine-tune other layers on the mango
dataset. To compare with the experimental results of the previous
study [43], we also use F1-score to evaluate the results. The thresh-
olds of Intersection over Union (IoU), object score, and classification



Fig. 6. The sensitivity-n results of the attribution methods in different layers.
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score are all set to 0.5. Results of F1-score, trained weight size, and
GFLOPs are shown in Table 8. Our pruned network, i.e., YOLOv3-
tiny (pruned with AS-QA), reduces the GFLOPs from 8.3 by 72.3% to
2.3 and further improves the accuracy achieved in [43]. Using AS-
QA attributions allows us to remove irrelevant convolutional kernels
more effectively, so as to better choose the pruning rates and kernels.
This technique can prune a well-designed and large-scale network
into a small network to detect single class of objects that can be de-
ployed on mobile devices, e.g., embedded micro-controller units.
Moreover, it is straightforward and easy to use even for non-
machine learning engineers.
10
5.6. Detecting vulnerable neurons

An adversarymethod canmislead the true output of CNNs into arbi-
trary result by just adding imperceptible perturbations on the original
images. Recently, Ghorbani et al. [26] proposed to use channel-level at-
tributions to detect channels mostly influenced by adversary samples.
In this experiment, we further extend their idea to neuron level and
find neuron-level defense of adversary samples can be more efficient
than that of channel level.

We apply neuron attributions to identify the neuron features most
related to the adversarial attacks. We first select a general iterative



Table 6
Sensitivity-n evaluation on different attribution methods in all layers.

Layers

Methods 3a 3b 4a 4b 4c 4d 4e 5a 5b mean

AS-QA 0.80 0.82 0.83 0.83 0.77 0.78 0.75 0.91 0.97 0.83
AS-OPT 0.82 0.84 0.85 0.83 0.77 0.80 0.74 0.93 0.99 0.84
Saliency 0.03 0.03 0.04 0.08 0.06 0.06 0.06 0.10 0.13 0.07
GradxInput 0.80 0.81 0.85 0.84 0.78 0.75 0.74 0.93 0.98 0.83
SmoothGrad 0.04 0.05 0.02 0.06 0.03 0.07 0.16 0.22 0.31 0.11
EpsilonLRP 0.81 0.82 0.84 0.84 0.79 0.76 0.71 0.94 0.98 0.83
DeepLIFTRescale 0.59 0.65 0.68 0.68 0.65 0.65 0.62 0.90 0.98 0.71
DeepLIFTReveal 0.28 0.34 0.36 0.43 0.43 0.50 0.46 0.87 0.98 0.52
DeepSHAP 0.59 0.62 0.69 0.70 0.61 0.64 0.60 0.91 0.98 0.70

Table 7
Pointing game evaluation. Averaged accuracy on the pointing game benchmark over all
data and a subset of difficult images.

Method VOC COCO

AS-QA 87.1/77.9 58.1/52.6
AS-OPT 87.7/78.2 58.4/53.7
AS-Uniform 80.4/66.7 52.2/47.1
AS-Gaussian 83.9/68.9 54.1/48.4
AS-Zero 85.6/72.8 55.9/50.1
AS-MaxDistance 81.1/68.9 54.5/47.4
AS-Expectation 85.9/76.0 55.4/52.1
AS-Neutral 87.1/76.1 57.5/52.2
Saliency 72.3/49.4 42.3/37.6
GradxInput 86.8/75.7 57.7/51.1
SmoothGrad 78.2/59.1 49.7/43.4
EpsilonLRP 88.9/76.5 58.8/51.7
DeepLIFTRescale 86.1/76.2 57.2/51.6
DeepLIFTReveal 83.3/69.1 55.6/49.1
DeepSHAP 86.6/75.1 57.8/50.1

Table 8
Network performance (F1-score, weight size, and GFLOPs) formango detection on test set
images. Pruning the network based on AS-QA attributions further improves the network
performance achieved in [43].

Networks F1 score (%) Weight Size (Mb) GFLOPs

YOLOv3-tiny (pruned with AS-QA) 95.1 3.1 2.3
Pruned YOLOv3-tiny [43] 94.4 5.3 2.6
YOLOv3-tiny 94.0 34.8 8.3
YOLOv3 95.1 240.5 99.2
Faster R-CNN(VGG) 94.5 533.9 –
Faster R-CNN(ZF) 93.9 230.1 –

Fig. 7. Accuracy changes after zeroing out neuron
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adversarial method [29] to generate attacks. Simply, we target the ad-
versarial classes and generate perturbations using gradients iteratively
on original images tomislead the network.We randomly select 20 clas-
ses of images from the first 700 classes in the ImageNet dataset, and
then perturb these images by targeting 10 adversarial classes which
are randomly selected from the last 300 classes.

High attribution scoresmean that these neurons aremore leveraged
by the adversarial attack; thus, if we remove them, the accuracy on ad-
versarial classes should drop heavily, whereas the accuracy on original
labels is preserved. For evaluation, three metrics are used, i.e., top-5 ac-
curacies on original labels using adversarial images, on adversarial la-
bels using adversarial images, and on original labels using original
images. Then, as shown in Fig. 7, after zeroing out about 1.5% of neurons
in these layers, the adversarial samples cannot mislead the network.
When zeroing out 3% of neurons, the accuracy on the adversarial classes
drops to near 0, i.e., the adversarial information hidden in the perturba-
tions cannot be extracted by the network. We also implement the ex-
periment stated in [26] using channel attributions to repair the
network, as shown in Fig. 8. All three results show that the defense of
adversarial attack in the channel level is less effective than in the neuron
level. For example, in Fig. 8(a), the attack disappear after 10% channels
are removed, but the attack disappears after removing less than 1% of
neurons in Fig. 7(a).

Generally, adversarial attacks are almost imperceptible to humans,
that is, the attackmay only affect a small number of neurons. Therefore,
if these affected neurons can be detected and removed, we can elimi-
nate the attack and reconstruct the original features effectively. This ex-
periment suggests that neuron attributions can potentially offer a fast
mechanism to repair fooled networks.
6. Conclusion

In this work, we discussed the significant influence of a baseline on
attribution results and used Aumann–Shapley values as an axiomatic at-
tributionmethod to compute neuron attributions. Based on the essence
of Aumann–Shapley method itself, we proposed two baseline proper-
ties and designed a general objective function of generating baselines.
Then,we approximated it as a quadratic optimization problem to gener-
ate the attribution baseline more efficiently. We demonstrated our
method can be more accurate than other existing baseline selections
and attribution methods using attribution heatmaps and three quanti-
tative metrics, i.e., robustness, sensitivity-n, and pointing game. More-
over, to show the practicability of neuron attributions, we applied
attributions to network pruning and adversarial analysis. As research
on this area continues, we would like to propose a metric to evaluate
the error caused by the approximations and a better benchmark to as-
sess attribution results systematically.
s most contributing to the adversarial classes.



Fig. 8. Accuracy changes after zeroing out channels most contributing to the adversarial classes.
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Appendix A. Axioms of attribution methods

To better understand the merits of attribution methods, it is neces-
sary to assess them with respect to several fundamental axiomatic
properties. The main ideas of these axioms can already be found in
[11] inmore general and abstract form, see also [8,9], butwewant to re-
phrase them in a way that optimally prepares readers to the reason of
selecting Aumann–Shapley values. We compare attribution methods
using the following five desirable axioms established in previous stud-
ies: 1) efficiency, 2) implementation invariance, 3) null player, 4) symme-
try, and 5) linearity.

Axiom 1. Efficiency. An attribution method satisfies efficiency when
the attribution scores add up to the particular output fc given the feature
maps A, i.e., ∑Rc = fc(A). This axiom, also called conservation [7] or
completeness [9], is regarded as a sanity check that attribution scores
are comprehensive in a numeric sense.

Axiom 2. Implementation invariance. If the outputs of two networks
are equal for all inputs, these two networks are functionally equivalent,
despite in possibly very different implementations [9]. An attribution
method that satisfies implementation invariance should produce identi-
cal contribution scores when applied to the functionally equivalent net-
works given the same input. The attribution explanation failing to
satisfy this axiom is potentially sensitive to unessential aspects of the
network.

Axiom 3. Null player. If some features are independent of the imple-
mentation of a network, then these feature attributions should be
zero. If a feature does not contribute to the result is assigned with a
non-zero value, the zero attribution value becomes meaningless for all
non-contributing features.
12
Axiom 4. Symmetry. If the function implemented by a network de-
pends on two features equally, i.e., not on their order, then the attribu-
tions assigned to these two features should be equal. It seems natural
to satisfy symmetry because if two features play the exact same impor-
tance, they should receive the same attribution.

Axiom 5. Linearity. Suppose that an integrated network f is a linear
combination of two different sub-networks, i.e., f = af1 + bf2, then the
attributions for the network f should be the weighted sum of the sub-
attributions for f1 and f2 with weights a and b. Specifically, the
attribution method should preserve the linearity among interpreted
networks. If the attribution method cannot produce linear-correlated
results given a linear combination, it is impossible to assess whether
the attributions are reasonable in the case of deep network combina-
tions.

Aumann–Shapley method and most Shapley-based attribution
methods can satisfy these axioms. This is a direct conclusion from past
research [8]. These axioms that any attribution method should satisfy
motivates our utilization of Aumann–Shapleymethod to attribution cal-
culation.
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