DOI: 10.1111/cgf. 14651

COMPUTER GRAPHICS forum
Volume 0 (2022), number 0 pp. 1-14

Detail-Aware Deep Clothing Animations Infused with Multi-Source
Attributes

T.Li,! R. Shi? and T. Kanai®

!Faculty of Information Technology, Beijing University of Technology, Beijing, China
2Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
rui-shi@outlook.com kanait@acm.org

Abstract

This paper presents a novel learning-based clothing deformation method to generate rich and reasonable detailed deformations
for garments worn by bodies of various shapes in various animations. In contrast to existing learning-based methods, which
require numerous trained models for different garment topologies or poses and are unable to easily realize rich details, we use a
unified framework to produce high fidelity deformations efficiently and easily. Specifically, we first found that the fit between the
garment and the body has an important impact on the degree of folds. We then designed an attribute parser to generate detail-
aware encodings and infused them into the graph neural network, therefore enhancing the discrimination of details under diverse
attributes. Furthermore, to achieve better convergence and avoid overly smooth deformations, we proposed to reconstruct output
to mitigate the complexity of the learning task. Experimental results show that our proposed deformation method achieves better
performance over existing methods in terms of generalization ability and quality of details.
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1. Introduction

Clothing animation is a fundamental topic in computer graphics,
aiming to generate realistic clothing deformation effects for many
applications including virtual try-on, video games and films. With
the progress of the graphics field, users are paying more attention
to the visual effects of garments, including how they interact more
realistically with the body and how wrinkles increase or decrease
with different movements. High-quality clothing deformations pro-
vide users with convenience during online shopping or provide an
immersive experience for entertainment.

To meet the needs of producing high-quality clothing anima-
tions, predominant approaches are based on physics-based sim-
ulation [NSO12, NMK*06]. Despite the convincing effects pro-
vided by these methods, deployment to real-time applications is
still challenging due to the high costs of computer simulation pro-
cess.supplementary material

To overcome high computational costs and simplify the defor-
mation process, learning-based solutions [dASTH10] are proposed
to approximate clothing deformations according to relevant influ-

encing factors (e.g., motion and shape of the body). While these
methods can roughly imitate the behaviour of clothing animation,
there still remain issues in terms of generalization and quality of
details.

Most state-of-art learning-based studies [SOC19, PLPM20,
TBTP20] adopt multi-layer-perceptron (MLP) models to predict the
nonlinear deformations of garments. Although the predicted results
contain plausible wrinkles, the trained model cannot generalize to
new garments because both input and output are vectors of restricted
size (usually related to the number of vertices), resulting in the train-
ing and test targets being forced to have the same number of ver-
tices. Even though a constant mesh topology with style parameters
[PLPM20] can cope with different garments, it cannot represent fine
details with reasonable mesh resolution when the deformation tar-
gets are highly variable (e.g., extremely long and short garments,
or t-shirt and jacket). Furthermore, because of the limited ability
of MLPs to understand 3D information, a great number of param-
eters is usually required to realize the deformation approximation
for specific mesh topologies. On the other hand, solutions based on
graph neural networks [CMM*20, GCP*22] can effectively address
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Figure 1: We present a novel learning-based method for automatically generating detail-aware deformations for diverse garments worn
by different body shapes in arbitrary poses. Through our method, the model can easily make reasonable approximations for individualized

deformations caused by different attributes.

the generalization limitation of MLPs, as their input and output are
3D mesh features and the trained parameters are independent of the
mesh topology and the number of vertices. However, the approx-
imated garments tend to be overly smooth and lack rich wrinkles
[GCS*19]. To enable realistic clothing deformations, existing graph
learning-based research [VSGC20] has to trade pose-variation for
realism, which only predicts the deformation in t-pose.

The main reason why learning-based methods for clothing ani-
mation need to weigh the above aspects is: the extreme complex-
ity of the fine deformation prediction of garments in multiple states
(under various postures, worn by various bodies, efc.). Our method
essentially overcomes this ‘complexity’ and uses one framework
to efficiently generate high-quality deformations with fine details
(see Figure 1). Deformations can be approximated in two steps: (1)
learn a model to globally drape the garment on the target body in
a certain pose, (2) learn an additional model to produce the high-
frequency wrinkles based on the corresponding coarse deformation.
The overview of the method is shown in Figure 2. Specifically, our
technical contributions are three-fold:

* To account for complicated and irregular detailed wrinkles, we
first discuss that the fit between the garment and body influences
the degree of wrinkles: loose clothes have smoother, sparser and
wide wrinkles, while tight clothes have thinner, denser and narrow
wrinkles. Therefore, we parametrize the relationship and propose
the fit parameter, which is regarded as one of the attributes.

* To make the model generalized and effectively map relevant in-
fluencing attributes (i.e., fit, body shape and pose) to deformation
details, we design an attribute parser to generate detail-aware en-
codings and then infuse them into the graph neural network. This
infusion maps the original graph features to representative fea-
tures that are adaptive to the corresponding attributes, providing
a meaningful signal to the model and learning realistic deforma-
tions in a detail-aware manner.

¢ To facilitate the deformation learning and achieve high-quality
predictions, we address complexity fundamentally from the novel
perspective of output reconstruction. Existing studies always di-
rectly output the three-dimensional vector (position or displace-
ment) of each vertex where the value of each dimension ranges
from negative infinity to positive infinity, which makes it difficult

for the training to converge to a reasonable range and the pre-
diction results tend to be overly smooth. To address this problem,
we decompose the output vector as the combination of magnitude
and direction where the value range of the magnitude is greater
than zero and the value range of the direction is from —1 to 1. This
strategy plays a crucial role in the learning of fine deformations,
since it greatly reduces the range of output variables, thereby mit-
igating the complexity of the task.

To the best of our knowledge, our study has been the first to en-
able unified models to realize detail-aware deformations for gar-
ments with various mesh geometries worn by diverse body shapes
in any posture. Our experiments confirm that our proposed method
outperforms existing clothing animation methods in terms of gen-
eralization and deformation quality.

2. Related Work

In this section, we first discuss existing clothing animation meth-
ods by classifying them into physics-based simulation and learning-
based models. Then, we also introduce the latest investigations on
learning-based deformation.

Physics-based simulation. Pioneering studies achieve realistic
clothing animations based on geometric constraints [LC04, SSIF09,
RPC*10], however, they always suffer from instability and high
computational cost. In order to make the simulation efficient,
research in Miiller and Chentanez [MC10] computes wrinkles by a
static solver and adds them on the coarse base mesh. As a similar
idea on adding fine details on low-quality cloth, Gillette et al.
[GPV*15] propose tracing wrinkle paths on the coarse mesh fol-
lowing the per-triangle compression field. To accelerate the compu-
tation, recent researchers are also making efforts to improve GPU-
based algorithms. For example, yarn-level contact can be modelled
implicitly with GPU in [CLMMO14]. Ni et al. [NKT15] present an
algorithm to simulate cloth with complex collisions using a parallel
run-time system. To exploit high parallel performance, a matrix
assembly algorithm is proposed [TWT*16] which can accurately
solve the linear system. For clothes with more than 50,000 vertices,
research in Wu et al. [WWYW20] can still achieve fast simulations
because of the effective conversion of continuous constraints. In
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Figure 2: Overview of proposed method pipeline. Given a garment with an arbitrary mesh topology, a target body with any shape, and a
random animated posture, our method is able to approximate high-quality clothing deformation with expressive detail wrinkles. Our key
contribution is to address the challenge of ‘complexity’ by designing a two-step framework with ideas of proposing the fit parameter «, detail-
aware attribute parser and output reconstruction (from the displacement vector A to its magnitude || A || and direction §). First, the constructed
graph Gy is fed into a coarse garment generator W, to predict the decomposed components || A course | and 8cpar5e Of the coarse corrective
displacement therefore realizing coarse deformation prediction M,,q.. Next, we build a graph G based on the generated deformation M o ;s,
Instead of directly applying attributes to each graph node, we further propose a detail-aware attribute parser W, to generate detail-aware
encodings and infuse them into the original graph to obtain the representative G*. Then, a detail garment generator is designed to process
features of G* and output || A il and Sgei in each branch. Two predictions are finally multiplied and added to the M., to realize the

ultimate detail clothing deformation M jo.;.

practice, we usually use physics-based simulations as ground truth
data for learning-based deformation and train the model to be able
to estimate effects close to those of the physics-based simulations.

Learning-based clothing models. Inspired by the success of
deep learning, a number of works are attempting to learn the defor-
mation as a function of relevant parameters, where relevant param-
eters include closest body vertex position, associate body skinning
weights, joint rotation angle, efc.

To resolve the high computational costs of physics-based simu-
lation while realizing non-linear clothing behaviours, Santesteban
et al. [SOC19] propose a two-level strategy to generate clothing de-
formations, where the first step is to use MLPs to learn the global fit
and the second step is to use recurrent neural networks to learn the
wrinkles. Also in order to estimate cloth deformations with fine de-
tails, TailorNet [PLPM20] adopts multiple MLPs to realize the task,
in which low-frequency deformations are predicted using a simple
MLP model, and high-frequency deformations are predicted using
the mixture of multiple MLPs. To model how people wear the same
garments in different sizes, Tiwari e al. [TBTP20] propose a Sizer-
Net to approximate the wearing effect of a garment in different sizes.
Because the dataset only consists of A-pose garments and garments,
the proposed method cannot generate a variety of deformations in
different poses. To solve the garment-body interpenetration, novel
garment space is proposed in Santesteban et al. [STOC21], which
eliminates the need for any postprocessing steps. Although these

studies have achieved success in the automatic clothing deforma-
tion approximation with fully connected layers, a common limita-
tion of these methods is the generalization ability, i.e., independent
training is always required when deforming new garments with new
mesh topologies.

To address the fundamental limitation of generalization in
learning-based deformations, research tries to approximate the
clothing deformation using graph neural networks which can handle
3D data in non-Euclidian domains. The latest study in Chentanez
et al. [CMM#*20] introduces a graph neural network with a novel
convolution operator for cloth and body skin deformation approx-
imation. The proposed solution is specifically for triangle meshes.
Inspired by point cloud processing, Gundogdu et al. [GCS*19] in-
troduce the framework based on PointNet for clothing animation.
The results look plausible but tend to be overly smooth. Focusing
on fast clothing deformation, Vidaurre er al. [VSGC20] present a
fully convolutional graph neural network (FCGNN) to predict de-
formations with fine-scale details. The framework consists of two
graph neural networks with the same structure and a different num-
ber of layers, which respectively predict the coarse draping and
refinement. The proposed pipeline can generalize to unseen mesh
topologies, garment parameters and body shapes. However, the pre-
diction is only for one pose and does not consider pose variations.
Bertiche er al. [BMTE21] predict clothing deformations by using
GCN and MLP together, but are unable to achieve satisfactory re-
sults for loose garments, such as dresses.
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Alternatively, recent research [CPA*21] introduces an SMPLicit
model for garments using an implicit representation that is capa-
ble of representing garments with different topologies. However,
some detailed deformations cannot be achieved precisely, espe-
cially for loose garments. Other studies achieve clothing anima-
tion from the perspective of computer vision. Research in Deep-
Wrinkles [LCT18] learns a conditional adversarial network to
generate high-frequency details in normal maps. Recently, Zhang
et al. [ZWCM21] tackle the generalization problem and make it
possible to transfer details across the normal maps of different gar-
ments. Realistic clothing animation can also be achieved by the de-
forming garment with the displacement map [JZGF20]. However, it
falls short when applied with loose garments for the body.

Learning-based deformation. Several methods also apply data-
driven models to deformation approximation for animated charac-
ters. Loper et al. [LMR*15] present a learned skinned multi-person
linear model (SMPL) of human body shape and pose-dependent
shape variation. Based on this, dynamic blend shapes are predicted
in Refs. [CO18, SGOC20] to enrich soft-tissue effects. These ap-
proaches can be well generalized to new shapes and motions, but
only work for body meshes with a fixed number of vertices. By
mapping nodal linear deformations to the nonlinear one with con-
textual features, Luo er al. [LSW*18] can achieve elastic body sim-
ulation in real-time. To make film-quality characters run at inter-
active rates, Bailey e al. [BODO18] train multiple MLPs for one
specific character. The generalization problem is solved in Liu ef al.
[LZT*19], which uses graph neural networks to predict skinning
weights for game characters with complicated dressing. Research
in Xu et al. [XZK*20] also utilizes the graph neural network to pre-
dict the number of joints and skinning weights. To achieve realistic
deformation, the non-linear corrections are predicted in each pose
step [LSK20, LSK21] by using the improved graph neural networks.
Inspired by these methods, in this work, we adopt the SMPL model
as the base body and design graph-learning-based models to achieve
the clothing deformation with good generalization ability and high-
quality results.

3. Overview

Given a garment with arbitrary mesh topology, a target human body
with any shape, and a series of poses in motion, our goal is to au-
tomatically generate realistic clothing deformation with fine-scale
wrinkles. Training and predicting this task are not simple due to the
high variance of the deformation details. To address this challenge,
we first propose a fit attribute that can affect the details of wrinkles to
a large extent (Section 4.1). Together with shape and pose attributes,
the multi-source attributes enable us to predict more realistic cloth-
ing deformations and can give the model good generalization capa-
bilities. Next, to fundamentally mitigate the complexity of the task,
while ensuring high-quality deformation effects, we propose a new
perspective of output reconstruction (Section 4.2). Unlike the direct
prediction of the displacement of each vertex in all previous studies,
we decompose this displacement so that the numerical range of the
prediction target is greatly reduced. With these strategies, we intro-
duce a pipeline that divides the deformation into two steps. The first
step (Section 4.3) is to learn a coarse garment generator to globally
produce smooth clothing deformations with global draping effects.

Fit degree: loose

medium tight

Wrinkle’s
degree: smoother and sparser ~ medium

detailed and denser

Figure 3: Fit of garment and body influences wrinkles.

As depicted in Figure 2, we use a coarse garment generator Weoyrse
to achieve this, where W, is designed with two branches consist-
ing of graph-attention-based (GAT) blocks and fully connected lay-
ers. Next, the second step (Section 4.4) is to further enhance details
based on the coarse garment. Because of the complexity of this step,
as shown in Figure 2, we design an attribute parser Wyrser to gen-
erate detail-aware encodings based on multi-source attributes and
then infuse them into detail garment generator Wy, to generate
rich and plausible wrinkles locally. With the help of Wy, €xces-
sive smoothness can be avoided in deformations generated by Wi
to a certain extent.

4. Approach
4.1. Garment-body descriptor

To achieve complex clothing deformations, we first observed pa-
rameters that affect the quality of deformations. In real scenes, when
the relationship between clothes and body (i.e., the degree of fit)
varies, the effect of garments on both global (rough) and local (de-
tailed) deformation is also different. As shown in Figure 3, for the
fixed material, when the fit degree is from loose to tight, the wrin-
kles of garments are from smoother and sparser (with a wider wrin-
kle width) to finer and denser (with a narrower wrinkle width). This
observation demonstrates the need to generate the fit parameter as
one of the network inputs, helping to better target the different fits
of garments to produce more realistic deformations. Next, we will
describe how to build this relationship between garment and body
and how to express this variation.

For the target body, we adopt the SMPL [LMR*15] model which
represents the human body M, with N, vertices parameterized by
shape (8) and pose (6):

Mb = Mmpl(ﬂb(ﬂvg)v‘l(ﬂ)vgv W)v (1)

M, =T + B,(8) + B,(6), 2

where the learned skinning function Wy, (+) is applied to deform the
rest-pose mesh M, (8, ) with skinning weights W of the skeleton
J(B). My(B, 0) is computed by applying shape blend shapes B,(8)
and pose blend shapes B,,(6) to the mean template mesh 7' € RY*3,

Given the SMPL body M), € R™>3 and garment M, € RY:*3,
we next explore their correspondence. We define the indicator ma-
trix I € {0, 1}¥* to indicate whether a garment vertex is associ-
ated with a body vertex, where the indicator matrix I is obtained
by finding the closest vertex from garment to body. Here, we as-
sume that the body mesh has sufficient resolution and allows for the
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one-to-one correspondence between body vertices and garment ver-
tices. For each garment-body pair (M,, M,) in rest pose, the distance
vector between corresponding garment vertices to body vertices can
be calculated asd = ||M, — IM,,||, whered € R, and || - || denotes
the Euclidean norm operation along the last dimension of the ver-
tex matrix.

Next, we need to concatenate the distance vectors of all garment—
body pairs into a matrix, in preparation for exploring a concise rep-
resentation of the distance information in each pair. However, the
‘vector concatenation’ here is difficult because the vector length
N, varies in different garment-body pairs. Therefore, to make all
the distance vectors of the same length so that they can be con-
catenated together, based on the minimum number of vertices N
in the dataset, a fixed number of N; elements are selected evenly
from the distance vector d of each garment body pair to form the
new distance vector d*, where d* € R™: . Specifically, the selection
is accomplished by rejecting (N, — Ny) vertices closer than the ra-
dius r = /A, /(CN}) where A, is the area of a garment mesh. If not
enough vertices are returned, the radius is gradually reduced by in-
creasing the integer C until the number of vertices equals N;. With
the fixed length distance vectors, we can then concatenate them to
form a distance matrix D = [df, ... d} 1€ RN: *Mir which stores
distance information between all garment body pairs. Notice that
the strategy of fixing Ny is only used here when constructing the
distance matrix, while in the latter sections, the networks are still
input to garments with an arbitrary number of vertices N,.

Next, we seek a parametric expression to represent this informa-
tion concisely. We compute the fit parameter using factor analysis
(FA) to model the variance along each vertex independently. Con-
sidering the speed of convergence, we use SVD-based likelihood
optimization [SLY20]. FA in matrix term is defined as:

D— u ~ LA, (3)

where u € R is the mean vector which should be broadcast to
the same size as D € RV M for the subtraction. L € RY*¥ and
A € RFNuir denote the loading matrix and factors. In this way,
A consists of Ny of vector o = [ay, ay, ..., ar] € R’ which pro-
vides an efficient F-dimensional representation for each garment—
body pair. We call this parameter « as the fit attribute. At runtime,
given the test garment—body pair in rest pose, we use the trained FA
model to perform matrix multiplication only once (in rest pose) to
directly obtain the fit relationship «.

In addition, for clothing deformation, body shape and pose also
have an impact on the detail folds. Hence, we refer to these three
parameters («, B, 6) collectively as multi-source attributes. These
multi-source attributes play a key role in generating detailed defor-
mations, which are taken as the input of Wy, introduced in Sec-
tion 4.4.

4.2. Output reconstruction

Most deformation approximation studies are plagued by the prob-
lem of highly nonlinear output, i.e., vertex position or displace-
ment. For the output of each vertex, the value of each element
in the output vector ranges from negative infinity to positive in-
finity, leading some studies to utilize only a large number of

fully connected layers while sacrificing generalization [PLPM20],
or to make predictions for only one pose for quality assurance
[VSGC20]. So far, there has been no research attempting to solve
the problem fundamentally from the perspective of reconstructing
output.

In our work, we propose an output reconstruction method by de-
composing the output vector of each vertex into the magnitude and
direction:

Ai = A © 8, C)

where the original output is A; € R?, the decomposed magnitude
is ||A;]| € R* and the direction is §; € R*. The operator © means
Hadamard product, where the magnitude || A;|| should be broadcast
to the same size as the direction §; for element-wise multiplication.
Unlike other learning-based methods which directly predict A; with
a wide value range of (—o00, +00) of each dimension of the vector,
our method indirectly predicts the vector’s magnitude || A; || with the
narrow value range of [0, +-00), and the direction vector §; with each
dimension value range of [—1, 1]. In our two generators (shown in
Figure 2), both networks are designed with two branches in order to
predict the decomposed items separately. In addition, based on the
value characteristics, we adopt different activation functions in two
branches: ReLU is used in the || A, || branch to output positive values;
Tanh is used in the §; branch to map the resulting values between —1
and 1. Thus, in contrast to the original output A; with the infinite
degree of freedom, the value range of our decomposed output is
greatly ‘narrowed’, and with the help of the activation function, it
can be ensured that the output is always within a reasonable range.

With the two approximated items of || A;|| and §;, we finally mul-
tiply them together to obtain the final non-linear offset vector. The
decomposition step does not seem complicated, and it plays a cru-
cial role that greatly mitigates the complexity of learning and can
generate better quantitative and qualitative results.

4.3. Coarse garment prediction

As stated in previous work [SOC19, PLPM20, VSGC20], directly
regressing clothing deformations as a function of designed parame-
ters with one model will result in unrealistic results. Therefore, the
final deformation process must be divided into several steps to per-
form approximations. In this work, we also decompose clothing de-
formation into coarse deformations with the overall fit and detailed
deformations with fine-scale wrinkles.

The goal in the first step is to achieve plausible clothing coarse
deformation M, in the garment worn by the target body M, in a
certain animated pose:

Meourse = IMy, + Acoarses (5)

whereI € {0, 1}¥*M refers to the indicator matrix of the association
between garment and body vertices. For the remaining residual part
Acourse € RY¥3 we aim to learn a model W, to automatically
infer the offsets.

With the garment and animated body, we first need to construct
a parametric space that can concisely express useful information
for coarse deformation without ignoring the spatial information.
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Therefore, we consider the input of our network to be a graph.
Through the indicator matrix I, Ny body vertices are associated
with N, garment vertices, where Ny = N,. Based on these body
vertices, we then construct the graph: G,; = (V”', 5”) which stores
vertex features V”' of Ny body vertices and their edges £ where
(XS EY denotes an edge connection between a node i and a
node j. In particular, the connection represented by £ is equal to
the connection of the garment vertices. Next, for each node, we
need to assign attributes to make the node informative. Specifi-
cally, to encode the body mesh geometry, we append the vertex
normal nf’ € IR? to each graph node; to reflect the body skinning
features in different poses, we adopt the relative skinning features
[LSK21] p¥ = 3% | w,,G,(0)G,(6*)"'j! € R to each node fea-
tures, where wy; is the skinning weight of the vertex i affected by
the joint s, G;(0) is the rotation matrix of joint s in pose 6 (0* de-
notes the rest pose) and ﬁﬁ" is the rest pose position. Specifically, this
relative skinning feature is a variant of the body vertex position, i.e.,
when the body is moved to an arbitrary location (no rotation), the
body vertex position changes while the relative skinning feature re-
mains the same. Since body features n” and p? alone cannot predict
clothing behaviours, we need to attach fit attributes to each node to
represent the relationship between the body and the garment. Here,
for simplicity and conciseness, the first component a; of the fit at-
tribute o, which is the most discriminative one, is adopted. In total,
each node feature v/ in V*' consists of three attributes, which can
be expressed as: v/ = [0, p?, @] e R.

i

Having the graph with defined features as input, next we need
to design a model W,y for acquiring the latent representation
of the graph data and mapping it to the final prediction A guse-
To accomplish this task, there are two requirements for the de-
sign model W ose. Specifically, first, the model should have the
generalization ability that is able to deal with garments with ar-
bitrary mesh topologies. Second, the model should be able to in-
fer the overall deformation of garments under various body shapes
and postures according to the knowledge learned in the training
process. To satisfy these needs at the same time, we adopt GAT
blocks which extend the original GAT structure [VCC*17] with
the self-reinforced stream [LSK20] for efficiently handling com-
plicated 3D mesh features. Specifically, the original GAT structure
computes hidden representation of the graph node by aggregating
the weighted neighbouring features; moreover, the self-reinforced
stream uses a fully connected layer to linearly map the original
node features to the latter layer. By aggregating node features
from the neighbourhoods and strengthening self-features, such GAT
blocks allow for acquiring the latent representations of irregular
mesh graph data without the need of knowing the graph structure
upfront.

As shown in Figure 2, for coarse deformation prediction, first we
apply one block in the first layer for dealing with the input graph,
and then apply three blocks to each branch, i.e., the magnitude pre-
diction branch and the direction prediction branch. The reason for
designing two branches is that the value range of two predictions (as
stated in Section 4.2) is different and each branch needs to adopt a
different activation function to ensure the range of the output value.
In the last layer of two branches, linear transformation and corre-
sponding activation and normalization are used therefore achiev-
ing the final predictions: the magnitude || Acoarse || and the direction

Scoarse- The whole progress through the coarse generator can be ex-
pressed as:

” Acoarsc ” ’ SCOBFSC = coarse (gb' )- (6)

Lastly, two predictions are element-wisely multiplied together to get
the displacement Aoy to the body. During the training, we mini-
mize the MSE loss between the predicted displacement Ay, and
the ground truth AST

coarse *

4.4. Detail garment prediction

After obtaining the coarse clothing deformation, the next step is
to realize detailed deformation with fine-scale wrinkles. Compared
with coarse deformation that is easy to generate, detailed defor-
mation is extremely difficult to obtain due to its complexity and
volatility under various states. Despite research advances, existing
learning-based studies always have to face the trade-off between the
generalization ability of models and the fidelity of results, i.e., the
model is only worked for the specific mesh topology [PLPM?20]
or for rest pose [VSGC20, TBTP20] and tends to produce overly
smooth deformations [GCS*19]. Even though significant efforts
have been made on many aspects such as input improvement, net-
work structure improvement, convolution operator change and in-
crease in the number of models, different degrees of wrinkles in
diverse poses and shapes still cannot be stably learned and approx-
imated.

To address these challenges, we propose the novel detail-aware
attribute parser Wyer and detail garment generator Wi, where
the key idea is to adjust the wrinkle-related adaptive distribution of
the graph and transfer it through two branches for detailed deforma-
tion approximation.

On one hand, given the generated coarse deformation, we build
agraph G = (V, £), in which V = {vy, ..., vy,} indicates clothing
mesh node features, and £ is mesh edges. For each node, the fea-
tures are defined as: v; = [n;, p;, x;], which consists of the vertex
normal n; € R?, the relative skinning features p; € R3 (as stated in
Section 4.3) and the distance vector from clothing vertices to all
joints x; = [x;1, ..., X;.s] € RS (S is the number of joints).

On the other hand, given a series of attributes that affect the
degree of wrinkles, directly constructing graphs by assigning
attributes (e.g., shape, pose, efc.) to every single node and then
forwarding them into the network is the most common strategy in
previous graph-learning-based methods. However, it will lead to
feature redundancy because attributes are independent on a single
node. Therefore, we design a detail-aware attribute parser (as shown
in Figure 2) that takes the multi-source attributes («, B, 6) as input
and the detail-aware encodings Wpuer(@, B, 6) as output that can
adaptively adjust the graph feature distribution based on a given in-
put instance. Specifically, detail-aware encodings are vectors where
their dimensions equal to d'!, i.e., the dimension of the graph
feature of each vertex after the first layer. Then, we element-wisely
multiply it with the transformed graph along the feature dimension:

G = Wyrser(et, B, 0) © Wil (©), (7

where G* refers to the graph with the infused features after the
first layer of the graph W\!!. (G) and the detail-aware encodings
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Figure 4: Training and test samples in our dataset. Note that all test samples are unseen in the training set.

Woarser (¢, B, 6). In other words, the original features in W(}e‘gd“(g)
have been adaptively modified by high-dimensional attribute encod-
ings, so that new features in G* can be expressed in a more detail-
aware manner and be prepared for accurate prediction.

We input the new graph G* into the following layers of Wy (ex-
cept for the first layer Wdleltja“, the remaining part can be expressed
as W(El;ﬁl]). Similar to the coarse generator W, the detail genera-
tor Wy also has two branches, which respectively approximate
decomposed detail output elements: the magnitude ||Agew| and
the direction 84ei1. Due to the difficulty of the detailed deforma-
tion approximation, for each branch, in addition to graph-attention-
based blocks, we also apply graph pooling and unpooling operations
[Diel9] to avoid over-fitting problem and improve the model gen-
eralization ability. In conclusion, the approximation via the detail

generator after the first layer Wd[eann] can be expressed as:
2L
I Agetait Il Baetail = WJemu](g*) (8)

We multiply the predicted || A el || and Sgersir to obtain the corrective
displacement A ge(,i1, and add this to the coarse deformation to obtain
the ultimate detailed clothing deformation:

Merait = Meoarse + Adetail- (9)

During the training process, Wparser and Wegi are optimized simul-
taneously. We adopt MSE loss as the loss function to minimize the

difference between the predicted A ge, and the ground truth AdGeTmﬂ.

5. Evaluation
5.1. Dataset and Implementation

To evaluate our proposed method, we create a dataset (Figure 4)
consisting of various garments, body shapes and animated poses
for training and testing. To produce the ground truth data of gar-
ments, we utilize the 3D clothing design and simulation software
Marvelous Designer [Mar] to design and generate clothing deforma-
tions different mesh topologies and the number of vertices. To obtain
the coarse data, as in Refs. [VSGC20, PLPM20], we also apply the
Laplacian smoothing operator (with 0.12 diffusion coefficient and

40 iterations) to each generated clothing mesh. Then, to generate
different bodies, we adopt SMPL parametric human model and sam-
ple the second and seventh shape components. The original SMPL
template has 6890 vertices, which we re-mesh to give it sufficient
mesh resolution (with 27,554 vertices) to achieve one-to-one corre-
spondence with the garment mesh. This is done by applying 4-to-1
sub-division once for each triangle of an original mesh. For the pose
variation, we select animated poses from CMU mocap [CMU] and
AMASS dataset [MGT*19], including motion sequences of danc-
ing, ballet, efc. In particular, we divide the dataset into a training set,
atest set and a validation set, and ensure that the data in them do not
overlap. In our training set, we use 17 garments and six bodies with
2907 poses for each garment-body pair. Then, to verify the effec-
tiveness of the methods, we use seven garments, three body shapes
and 405 poses in the test set. Further, to effectively help us keep
track of training progress, we adopt three garments, two bodies and
103 poses for validation.

For the implementation, as shown in Figure 2, we next describe
the detailed structure of Weoarse, Wparser and Wieqyir. For training Wegarse,
the features of graph G, are input into a GAT block with the hidden
feature size of 256 where the multi-head number is 4, the feature
sizes of the self-reinforced stream and aggregation stream are 128
and 32, respectively. Features are applied with Tanh activation and
then fed into the || Acoarse || prediction branch and the §coare predic-
tion branch, both branches contain three GAT blocks with the hid-
den feature size of [512, 512, 256]. After graph convolution, three
fully connected layers are used to transform the features with the
hidden sizes of [256, 128, 1] in the || Acouse || prediction branch and
of [256, 128, 3] in the S.ouse prediction branch. To ensure that the
output range is reasonable, ReLU and Tanh activation functions are
used, respectively, after each layer of the two branches. Addition-
ally, normalization is also used for features in the 8.pare branch. For
training Wj,.sr, the multi-source attributes (o, B, 6) (Where o € R3,
B € R, 9 € R7) are transformed into detail-aware encodings by
three fully connected layers ([256, 512, 1024]) and ReL.U activation
function. For training Wy, the graph features G are fed a GAT
block with the hidden feature size of 1024. After infusing graph
features with detail-aware encodings, the feature dimension is un-
changed and features are input into the || Agewi || prediction branch
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Ground truth Coarse Ours

Figure 5: Generalization to new thin, regular and fat bodies.

and the 84y prediction branch. The structure of four GAT blocks
([256, 256, 128, 96]) and operations of pooling (N, roughly be-
comes half) and unpooling (restored) are the same in each branch.
Finally, fully connected layers with the hidden feature sizes of [128,
64, 1] and [128, 64, 3] and corresponding activations are, respec-
tively, adopted in the || Agewir|| prediction branch and e, predic-
tion branch.

5.2. Quantitative and qualitative evaluation

Generalization to new bodies. As shown in Figure 5, we provide
the generalization results of thin, regular and fat bodies that are un-
seen in the training set. Based on the predicted coarse deformation,
our method is able to generate fine-scale wrinkles which have no ob-
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Table 1: Mean error (mm) of per-vertex deformations in different body
shapes.

Test shapes Thin Regular Fat
Coarse 2.82 3.01 3.27
Detail 1.33 1.52 1.74

vious difference with the ground truth data. In addition, our method
can successfully predict individualized and detailed clothing defor-
mations of bodies with different shapes, which contains rich and
plausible wrinkles in the area of the left side of the waist. During
the training, the influencing attributes are transferred into detail-
aware encodings and clothing deformation is learned in a detail-
aware manner, so that we can effectively make accurate predictions
for new body shapes. Quantitatively, in Figure 6, we counted the er-
ror distribution of these three test bodies wearing the same training
garments under the same training poses. As observed, the number
of vertices is the highest in the clothing deformation errors of thin
bodies close to zero (Figure 6a), and the mean error of per vertex is
about 1.33 mm as reported in Table 1. The deformation prediction
error of the garment worn by thin bodies is relatively smaller since
the clothing folds are simpler than the garment worn by fat bodies;
in contrast, the garment worn by fat bodies has more complicated
folds, making them relatively difficult to predict. Overall, through
the deformation refinement of Wyeyyii and Wyyreer, deformation errors
are reduced by about half compared with coarse deformations.

Generalization to new poses. Figure 7 shows the results of visu-
ally evaluating the quality of our proposed approach of generaliza-
tion to new poses, in which we compared the deformations of the
ground truth physics-based simulations and our predictions. We ani-
mated dressed bodies with new postures of raising the hand, walking
and swinging. Through the proposed method, attractive details can
be successfully generated, in which the wrinkles in areas of armpits,
waist, shoulders are rich and quite similar to real effect of the ground
truth with per-vertex prediction error of 1.67 mm. During the train-
ing, in addition to graph constructions, we also design a Wer
to generate detail-aware encodings and infuse them into the graph
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Figure 6: Histogram plot of distribution of per-vertex errors of generalization to new body shapes. The bin width is 0.15. The first two bars
(error: 0-0.15 and 0.15-0.3) in (a) have the largest number of vertices, while those in (c) have the smallest number of vertices.
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Ground truth

Ours

Figure 7: Generalization to new poses.

neural network, so that the model can learn the individualized de-
formations caused by different poses.

Generalization to new garments. Figure 8 shows the qualita-
tive results of the generalization to new garments, i.e., long t-shirt
and vest. Here, the test garments have different garment meshes and
number of vertices from the training. Thanks to the graph-learning-
based model and proposed detail-aware strategies, our model can
reasonably approximate deformations with rich details regardless
of the garment design. Due to the influence of the hem, long t-shirt
fits tightly to the body compared to the vest, so more dense wrin-
kles appear in the deformation results around areas of stomach and
waist, which also follows the law of our first observation as stated
in Section 4.1.

Generalization to new garments, bodies and poses simultane-
ously. Figure 9 and Table 2 show our results on unseen garments,

Table 2: Mean error (mm) of per-vertex deformations in unseen garments,
bodies and poses.

Test Coarse Detail
Dress + thin body + new poses 3.46 2.11
Jacket + regular body + new poses 3.65 2.39
Coat + fat body + new poses 3.63 2.27

bodies and poses at the same time. Specifically, the types of test
garments have different mesh topologies, including cut-out detail
dress, short sleeve jacket and 3/4 sleeve coat. At the same time,
we let characters with new body shapes wear these garments and
perform animations with new poses. Despite the fact that all three
variables are brand new and do not appear in the training set, our
predictions still naturally match the ground truth and most of the
fine-scale wrinkles can be successfully produced. Overall, the per-
vertex average error of the predictions for all the test data is about
2.24 mm. Results demonstrate that our proposed method has pow-
erful generalization capabilities to handle completely new variation
terms simultaneously, and thus can be easily integrated into practi-
cal applications.

5.3. Ablation study

We conducted an ablation study to highlight the effectiveness of our
strategies: output decomposition, detail-aware attribute parser, two-
step approximation and graph pooling operation.

To evaluate the proposed output decomposition, we first retain
output displacement of per-vertex as the original three-dimensional
vector A gewii (W/o decomposition), allowing the network to have an
unbounded prediction range. Further, we set a limited value range
for the three-dimensional output displacement (w/output limit)
where the limited range is obtained by scaling each original dis-
placement value to (—1, 1) using a scale factor of 5 determined by
the dataset. Next, to evaluate the detail-aware attribute parser, we
tested the case of removing the attribute parser (w/o attribute parser)
where attributes are directly assigned to each graph node, and the

Coarse

Figure 8: Generalization to new short and long garments.
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Figure 9: Generalization to unseen garments, bodies and poses simultaneously.

case of replacing the element-wise multiplication with concatena-
tion in Equation (7) (concat attribute parser). Finally, to evaluate the
usefulness of two-steps approximation and graph pooling operation,
we adopt a single model instead of two-steps approximation (w/o
two steps) and removed pooling operators (w/o pooling) separately.
Notice that, for as fair as possible evaluations, the models used in
the above experiments have comparable capacities. Specifically, in
the cases of the removal of layers, the number of parameters in the
remaining layers is increased to ensure the approximate consistency
of capacity. Additionally, we choose the best-tested initialization
scheme for all evaluations, i.e., Glorot initialization for the graph
convolutional layers and Kaiming initialization for the other layers.

As shown in Figure 10, we plot the mean error of per-vertex dur-
ing the validation process. In the beginning, the method without
output decomposition produces the largest error because the output
result is difficult to be approximated with three values from neg-
ative infinity to positive infinity. As the epoch increases, it is still
accompanied by highly complicated outputs and errors remaining
between 2.5 and 3 mm that cannot be reduced. Next, when setting
the output within a limited value range, the error of the prediction
becomes lower than in the case of unbounded output, but the con-
vergence is not ideal. We also observe the importance of the pro-
posed attribute parser. Despite using a network structure with ap-
proximately the same capacity as the original after removing the
attribute parser, the deformation error is still large. Applying con-
catenation rather than element-wise multiplication in Equation (7)
leads to even worse results, as the attribute information cannot be
accurately infused into graph features. Also, without the two-step
strategy and the pooling operation, quantitative results are affected
to varying degrees. Figure 11 shows the qualitative results of these
experiments. As it can be seen, the direct prediction without output

—— ours
w/o decomposition
w/ output limit

w/o attribute parser
concat attribute parser
w/o two steps

w/o pooling

200 400 600 800
Epoch

Figure 10: Mean vertex error during validation of generating de-
tail deformations. Our proposed output decomposition and attribute
parser play a key role in the learning of detailed deformation.

decomposition leads to smoothing artifacts. Although the method
of scaling down the output to a limited value range can improve
the deformation effect, many detailed wrinkles are still lost. For
the result of without attribute parser, the deformation has the obvi-
ous folds with the wider width in the waist and collar areas, which
can reflect a certain degree of wrinkle trend. However, when us-
ing concatenation to combine the attribute parser-processed features
with graph features, qualitatively the results are much worse. We
also find the worse performance for the method without the two-
step approximation, it suggests that mixing global and local de-
formations for learning substantially increases the difficulty of the
task. Finally, for the case of removing the pooling operation, the
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Figure 11: Qualitative results of ablation study comparing detailed deformations of ground truth of physics-based simulation, approximated
by our full method, our method without output decomposition, without detail-aware attribute parser, without two steps and without graph

pooling.

Table 3: Comparison of our approach with other state-of-art learning-
based clothing deformation methods. Our method can achieve more func-
tions with smaller model size.

Methods ~ Verts. variation  Pose variation  Fit variation =~ Model size
FCGNN Vv X J 71.0 MB
TailorNet X v V4 2.0GB
Ours Vv 4 v 37.4 MB

deformation contains some details, but the position and trend of
some wrinkles differ from the ground truth, suggesting that graph
pooling works for the generalization of the model, i.e., using the
learned information to make valid inferences. In contrast, our full
method is able to successfully generate these major and subtle wrin-
kles and recover detail effects similar to the ground truth thanks to
the proposed strategies.

5.4. Comparison

‘We compare our method with other state-of-art learning-based ap-
proaches: FCGNN [VSGC20] and TailorNet [PLPM20]. As listed
in Table 3, FCGNN can generalize to arbitrary garment meshes due
to the use of a FCGNN, but it only predicts clothing deformations
under the t-pose. TailorNet is able to achieve pose-dependent defor-
mations, but it is limited to the use of trained MLP models to predict
deformations of new mesh topologies. To the best of our knowledge,
currently, there is no prior research involving tasks that are exactly
the same as our method to approximate clothing deformations for
various mesh topologies and body shapes in diverse poses.

The results of the qualitative comparison are shown in
Figure 12 and the results of the quantitative comparison are shown in

Table 4: Quantitative comparison of FCGNN [VSGC20], TailorNet
[PLPM20] and our method.

Methods Verts. variation Pose variation Fit variation
FCGNN 1.53 - 1.70
TailorNet - 2.23 2.17
Ours 1.46 1.85 1.56

Table 4. Because of the limited terms listed in Table 3, garments with
different number of vertices and garments worn by different body
shapes are evaluated for the method of FCGNN [VSGC20]; one gar-
ment under different postures and worn by different body shapes
are evaluated for the method of TailorNet [PLPM20]. As observed,
both FCGNN and TailorNet have the generalization abilities and
are capable of generating plausible deformation effects, especially
in waist areas, and for garments worn by thin body shapes (as green-
framed parts in the figure). Despite the predictions for conspicuous
wrinkles, the shoulder areas with small fine-scale wrinkles are still
overly smooth (as red-framed parts in the figure). Quantitatively, our
method also outperforms previous work. Although both our method
and FCGNN choose graph neural networks and both take a two-step
approach to deformation prediction, the key to our success in pre-
dicting the details of folds under multiple variables lies in the three
core techniques we proposed: the fit parameter, the output decom-
position and the attribute parser. Without these three techniques, a
vanilla graph neural network applied to deformation would suffer
from the complexity of multiple variables, and thus, as in the case
of FCGNN, would only be able to predict deformation under t-pose
and sometimes lose details. For TailorNet, it can successfully gen-
erate deformations with some details by over-fitting MLPs for each
clothing type with fixed number of vertices. Nevertheless, MLPs
require a large number of parameters resulting in the model size of
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Garment vertices number variation
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Figure 12: Qualitative comparison of FCGNN [VSGC20], TailorNet [PLPM20] and our method. FCGNN (with blue garments) can achieve
mesh topology variation and fit variation; TailorNet can achieve pose variation and fit variation; ours is the first approach to achieve all of
these. In addition, our method can generate detail-aware clothing animation, that allows for rich detail prediction caused by various attributes.

around 2.0 GB (just for the t-shirt), which makes them difficult to
be applied in practice. Meanwhile, the use of MLPs ignores mesh
topology information, resulting in models that do not really learn the
detailed deformations and thus the results are sometimes smooth.
The comparison shows the benefit of our proposed method: even in
the face of multiple variations, the model still has excellent gener-
alization ability to approximate not only obvious wrinkle folds but
also fine-scale details.

5.5. Runtime performance and memory

With the nVIDIA GeForce RTX2080Ti GPU, in the approximation
of clothing deformations of meshes with 3000-4000 number of ver-
tices, the average per-frame runtime is about 21 ms, where coarse
prediction takes 8 ms and detail prediction takes 13 ms. The pro-
posed method is 50 times faster than physics-based simulation, mak-
ing it suitable for real-time applications. The memory footprint of
our method is about 37.4 MB, where the W, model is 18.4 MB
and the Wyewii + Wharser model is 19 MB.

6. Conclusion

We have presented a graph-learning-based deformation method for
garments whose mesh topology can be arbitrary and can be worn
by any body shape in various poses. To achieve generalization and
high-quality predictions at the same time, we first propose the fit
parameter as one of the important attributes influencing the wrinkle
details. Then, we design an attribute parser to generate detail-aware
encodings and infuse them into the graph neural network to help
generate individualized details. Last and most importantly, we pro-
pose a novel output reconstruction strategy for the excellent con-
vergence of extremely complex regressions. This strategy can not
only be adopted in clothing deformations, but also works for pre-
dicting positions or displacement adjustments in other areas. Exper-
imental results have shown that our method with the above technical
innovations can overcome the limitations and outperforms existing
learning-based approaches.

Despite achieving powerful generalization and impressive de-
tailed deformations, our method still has a few drawbacks that can
be addressed in future works. First, we currently use a constant
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indicator matrix I to represent the correspondence between the gar-
ment and the body, but keeping I constant causes garment-body col-
lisions when the garment deforms significantly, which is addressed
by applying postprocessing step [PLPM20]. In the future, it would
be valuable to explore a a dynamically updatable indicator matrix
and adopting a diffused human model [STOC21] to effectively solve
the collision problem. Second, we currently apply SMPL bodies as
human models, which provide a parametric space of shape and pose
that can be easily used as one of input. In the future when faced
with different human model types, our currently input will need to
be adapted. For example, the dimension of the pose features 6 and
vertex-joint distance features x; is related to the number of joints and
therefore is only applicable to rigs with the fixed number of joints.
In this situation, the design of skeleton-independent pose features
or direct input of body vertex positions is possible solution in future
research. Third, each garment in our dataset is given the same mate-
rial and node distance settings. Future work can expand the dataset
to include different materials and tessellation, and then explore re-
lated attributes as network inputs to automatically generate more
realistic deformations.
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