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Understanding contributing neuron features is crucial to explaining convolutional neural network (CNN)
decisions. The attribution research provides an effective way to detect contributing neuron features and
numerically assign them attribution scores. However, a method to clearly and intuitively represent the
implications hidden in neuron attributions is lacking. Attribution scores show the numerical importance
of contributing neurons, but the meanings implied by these numerical scores are still not available. To
mitigate this gap, we propose an optimization-based visualization method named attribution visualiza-
tion, which enables an intuitive understanding of neuron attributions. Our approach is distinguished
from existing visualization methods by its ability to produce noise-free result, i.e., the ability to remove
irrelevant regions from visualizations. We achieve this by introducing an optimizable mask into the visu-
alization process and designing an objective function that simultaneously optimizes the area-constrained
mask and visualization. Furthermore, we propose the fractal noise pyramid with diverse and natural fre-
quency spectra as our mask perturbation technique which is key to removing unrelated noise in visual-
ization. We implement several comparisons and user studies with other visual explanations to
demonstrate the unique properties of our attribution visualization. We also apply our attribution visual-
ization on two representative CNNs, showcasing its ability to intuitively understand contributing neuron
features.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction

Convolutional neural networks (CNNs) are being employed on
an increasing number of real-world applications, but a good inter-
pretation of network decisions is still lacking [1–3]. Recently, ad
hoc and post hoc methods with decision interpretation capabilities
have received attention to better understand decision-making. Ad-
hoc interpretation focuses on identifying intrinsic decision modes
by building inherently interpretable mechanisms or models, while
post hoc methods focus on generating posteriori interpretations for
well-structured and pre-trained networks [4,5]. To explain a par-
ticular output of a trained CNN, it is crucial to understand con-
tributing neuron feature behaviors under a specific input. In this
situation, post hoc attribution methods have been suggested as a
good way to detect contributing neurons and assign them attribu-
tion scores under a particular output [6,7]. However, there is no
effective method to represent the implications behind the numer-
ical attribution scores, where the implications are the meanings
implicitly contained in the scores. For example, attribution scores
show the numerical importance of contributing neurons (the upper
part of Fig. 1), but the meanings implied by these numerical scores
are still not available. Users cannot understand what kind of impli-
cations are actually reflected by these neuron attribution scores. To
this end, we propose a novel viewpoint to achieve a clear and intu-
itive understanding of contributing neuron features. Specifically,
we design an optimization-based attribution visualization method
to represent the implications behind attribution scores, as shown
in the lower part of Fig. 1.

In the visualization community, there have been many studies
aiming at reconstructing neuron or channel features on a feature
visualization image which stands for the implication of neurons
with a certain degree of diversity [9–13]. These methods concen-
trated on visualizing the meanings of feature maps or any part
thereof that can be treated as high-level representations of an
input image. On the other hand, neuron attributions actually are
not representations of the original image, but rather scores indicat-
ing the contribution of neuron features. Our research has shown
that existing feature visualization methods designed for feature
maps are not directly suitable for visualizing the implication of
neuron attributions. This is because less-contributing neurons with
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Fig. 1. What do attribution scores imply? The attribution scores calculated using a
middle layer of GoogLeNet [8] represent the neuron feature contribution to the
classification results. While these scores are statistically valuable, they may not be
easily understandable for users what kinds of implications the neuron attributions
actually represent. However, by examining the figures presented below, one can
gain a better understanding of the implications behind these numerical attribution
scores.
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zero or small attribution scores can cause meaningless noise in the
feature visualization results. For example, as shown in Fig. 2, we
visualize neuron attributions related to the ‘‘Tabby” class in the
mixed4d layer of GoogLeNet [8] using a classical visualization
method [10] (slightly modified to accommodate attributions) and
our proposal, respectively. Without removing the influence of
less-contributing neurons, the noise in the visualization (the left
image in Fig. 2), possibly from the irrelevant regions, makes it dif-
ficult to understand the contributing features’ implications to the
‘‘Tabby” class. Therefore, the key challenge in visualizing the impli-
cation of neuron attributions lies in developing a method that can
accurately represent the features of contributing neurons while
eliminating interference from others in the feature space.

Achieving constraints in feature space is non-trivial, because
feature space is complex, especially in deep layers, which means
we cannot adaptively remove less-contributing neurons during
optimization. But attributions show a strong spatial correspon-
dence to image regions, i.e., the combination of contributing neu-
rons spatially corresponds to the target object in image space.
That is to say, we can achieve feature-space constraints by intro-
ducing a mask in image space. Then, the updating mask can be
applied to the updating visualization to filter the noise interference
caused by irrelevant or unimportant neurons. With this idea, we
introduce the concept of the mask into the visualization process
to achieve intuitive and noise-free visualizations of the implica-
tions of neuron attributions. As shown in the right image in
2

Fig. 2, the attribution implications associated with the output can
be grasped clearly by filtering out noises. The programming imple-
mentation of our proposal is available online (https://bit.ly/attr-
vis). More specifically, this paper presents the following
contributions:

(1) We propose an attribution visualization method to represent
the implications of neuron attributions, thereby understand-
ing the meanings of contributing neuron features. To elimi-
nate various noise and artifacts generated during the
visualization process, we introduce an optimizable mask
into visualization and design an objective function of opti-
mizing the mask and the visualization simultaneously.

(2) We find the frequency information of mask perturbations is
key to achieving a high-quality mask generation in the case
of simultaneous optimization. With this observation, we
design a fractal noise pyramid that possesses diverse and
natural frequency spectra as real-world images and dynam-
ically apply the fractal noise selected from the pyramid to
perturb the visualization image during optimization. Abla-
tion study in Section 4.2 shows our proposal can produce
the best visual effect among all tested perturbation alterna-
tives. Further user studies in Section 4.3 also show that our
proposal could present semantic information more intu-
itively than other visual explanations.

2. Related works

2.1. Attribution methods

Attribution methods can be used to understand the relevance
between neurons and a particular output. Simonyan et al. [14] used
saliency information to explain particular outputs (Saliency).
Shrikumar et al. [15] introduced an element-wise multiplication
between the signed gradient and the input (GradxInput) as a way
of calculating feature contribution scores. Although these vanilla
gradient methods can identify the features that can be locally per-
turbed the least to maximally change the output, they do not help
in computing the marginal contribution of a feature. To address
this limitation, other methods have been developed that involve
designing different backpropagation rules for non-linear opera-
tions. Bach et al. [16] proposed Layer-wise Relevance Propagation
(LRP) and designed several propagation rules for different network
architectures. Shrikumar et al. [17] proposed Deep Learning Impor-
tant Features (DeepLIFT) Rescale and RevealCancel. However, all
above methods break at least one of the self-evident axioms which
should be satisfied by any attribution explanation [18–20]. This
leads to attribute explanations that seem to be consistent with
human intuition but may be unreliable or misleading, and empha-
sizes the need for researchers to prioritize the reliability of attribu-
tion analysis from different sources [21–24].

To mitigate the lack of reliability, some researchers summarized
several fundamental axioms as a standard for the design of attribu-
tion methods [20,19,18]. Along with this axiomatic idea, the liter-
ature on Shapley values [25] in game theory suggests a unique way
such that desirable axioms are satisfied [26,20,27,28]. Lundberg
et al. [29] proposed Deep Shapley Additive Explanations (Deep-
SHAP) to estimate Shapley values with a layer-wise chain rule;
however, the generalization of the chain rule on Shapley values
is not yet clear. Sundararajan et al. [20] proposed Integrated Gradi-
ents (IntGrad) that can be regarded as computing Shapley values in
infinite games. Chen et al. [30] proposed a Shapley value propagat-
ing method to explain a series of networks that is an order of mag-
nitude faster than existing model-agnostic attribution techniques.
In this context, we select a recent Aumann–Shapley-based method
[28] in our attribution calculation. Resulting neuron attributions



Fig. 2. Left: result generated by modifying [10] to visualize attributions related to
the ‘‘Tabby” class. Right: our attribution visualization.
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R½‘� 2 RW�H�K stand for the contribution scores of neurons to a par-
ticular output in the hidden layer, where W;H, and K are width,
height, and channel number of feature maps in the ‘th layer, i.e.,
the attribution tensor has the same size with the feature maps.

2.2. Feature visualization methods

Feature visualization is generally based on the fact that a CNN is
differentiable with respect to an input image [10]. Thus, deriva-
tives can be used to modify the input image iteratively to look
for the kind of input that would cause a certain behavior of neu-
rons. There have been many studies that visualize features by
tweaking an image to excite one neuron, one channel in a hidden
layer, or specific layer representation [14,9,31–35]. However, these
methods of generating a visualization corresponding to a single
convolution kernel cannot express the features that are related to
a certain behavior under a given input instance. Some studies visu-
alized the implications of feature maps under a given input image
or the distribution of intermediate feature maps [36,10,9,12].
Despite this, there are only parts of features in feature maps related
to the particular output, the methods without distinguishing the
class-targeted features cannot be applied to understand contribut-
ing features.

To understand features contributing to the particular output,
some methods divide feature maps into several groups according
to spatial distribution [11] or neuron attribution factorization
[37] to generate class-targeted visualizations. More recently, Singla
et al. [13] proposed a detection method to locate contributing or
less-contributing neurons, and designed a visualization method
to represent these class-targeted neuron features. Although these
visualization studies are able to represent the implications of
class-targeted features (i.e., contributing features), none of them
can filter out the noise interference in visualization results caused
by irrelevant or unimportant neuron features as we introduced in
Section 1.

3. Attribution visualization

In this section, we start to introduce our attribution visualiza-
tion method. We first summarize the attribution calculation used
in our proposal. Then, we discuss our objective function for attribu-
tion visualization and mask area regularization. Finally, we intro-
duce the possible perturbation choices and our fractal noise
pyramid. An overview of our proposal is shown in Fig. 3.

3.1. Attribution calculation

To calculate neuron attributions, we use an Aumann–Shapley-
based attribution method introduced in [28]. In particular, for a
target output, this method computes the attribution scores
3

R½‘� 2 RW�H�K that represent the importance of neuron features,
where ‘ is the layer index, W;H;K are the width, height, and chan-
nel number of the feature maps in this layer.

To visualize the attribution scores, we first generate a heatmap
by summing the scores along the channel dimension. This heatmap
indicates the image regions from which the contributing features
are extracted. However, this compression of channels does not
reveal the full implications of neuron attributions. To address this,
we have developed a visualization method that provides more
detailed insights, which we will describe next.

3.2. Objective function for attribution visualization

Our goal is to find a natural-looking visualization to represent
the implications of neuron attributions related to the particular
output. This can be formulated as a regularized energy minimiza-
tion problem. Formally, to represent neuron attributions R½‘�, the
loss L should be maximized as much as possible while ensuring
the coordination of spatiality and proportion among neurons by
constraining the optimization process. Although there has been a
significant body of literature focusing on attribution calculation,
in our proposal, we select Aumann–Shapley method to compute
R½‘� as discussed in Section 2.1. The loss function can be defined as:

LðX;R½‘�Þ ¼
XW ;H;K

i;j;k

f ½‘�ðXÞ � R½‘�
� �

i;j;k
; ð1Þ

where X is the visualization image to be optimized. R½‘� stands for

the neuron attributions. f ½‘�ð�Þ means the output feature maps in
the ‘th layer. The operator � means the Hadamard product. The loss
is the sum of the element-wise multiplication of feature maps and
neuron attributions. This type of loss functions can be considered as
a variation of activation maximization [10]. However, such a func-
tion cannot highlight contributing neuron features exactly due to
the influence of many irrelevant neurons.

We would like to distinguish neuron features in the visualiza-
tion image. To achieve this, we introduce the concept of the mask
into the visualization loss function to suppress irrelevant neurons.

In particular, we want to find a mask M 2 ½0;1�W ½0��H½0�
where

MðnÞ ¼ 1 means that the nth pixel of the visualization image dom-
inate the composed image and MðnÞ ¼ 0 that it does not,
n 2 f1; . . . ;W ½0�g � f1; . . . ;H½0�g. W ½0� and H½0� are width and height
of the input image. Note that, the values in the mask are continu-
ous weights. To balance the pixel intensity, we use the mask to
induce an image region perturbation operator, denoted as M � X.
The detailed discussion of mask perturbation techniques will be
introduced in Section 3.4, but for now, it suffices to say that the lar-
ger the mask value, the more information of the pixel is preserved,
whereas the rest is replaced by noise. We constrain the preserved
area ratio of the mask to a fixed value bwhich can be selected man-
ually or automatically. Then, the goal is to minimize the objective
function:

X�;M� ¼ argminX;M:f meanðMÞ¼b �LðM � X;R½‘�Þ; ð2Þ

LðM � X;R½‘�Þ ¼
XW;H;K

i;j;k

f ½‘�ðM � XÞ � R½‘�
� �

i;j;k
; ð3Þ

where X� is the optimized visualization image. M� is the optimized
mask for determining important regions. f mean is the function to cal-
culate the average of a matrix or a tensor. b is the mask constraint
parameter.

In forward propagation, CNNs can obtain the discriminative fea-
tures to achieve image classification. However, the higher-layer
features discard a substantial amount of low-level image features



Fig. 3. The overview of our visualization method. The mask M and the randomly initialized X marked with bold green borders are variables to be updated simultaneously.
Dynamic selection of fractal noise according to mask values can filter out irrelevant information and highlight the meaning of contributing neurons.
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such as lines, shapes, angles, and scales that may be not directly
relevant to the image classification. Thus, the optimized result X�

may end up with a nonsensical illusion without regularizing the
visualization image. Basically, image regularizers could be divided
into three families, i.e., frequency penalization, transformation
robustness, and learned priors. Unfortunately, both frequency
penalization and learned priors have been shown to discourage
legitimate features [34]. Thus, we only consider image regulariza-
tion techniques of transformation robustness that are often used in
dataset enhancement during training consisting of random shear-
ing, padding, jittering, random scaling, and random rotating.
Namely, we consider the optimization process:

X�;M� ¼ argminX;M:fmeanðMÞ¼b � Es½Lðf transðM � X; sÞ;R½‘�Þ�; ð4Þ
where E denotes expectation and s is a random variable uniformly
distributed in the image transformation set. The image regularizer
helps to find robust structures and textures of objects during opti-
mization. Because transformation may change the image resolution,
padding or cropping to the original size should be the last step
before feeding the image into the network. For the sake of clarity
in the expression of the following equations, we will omit the image
regularizer term in the remainder of the paper, but they are indis-
pensable in generating visualizations.

3.3. Area-constrained mask

Enforcing the area constraint in Eq. (4) is non-trivial; here, we
use a regularization term to constrain the mask size by penalizing
the mask for which its average deviates from the constraint thresh-
olding value b:

X�;M� ¼ argminX;M �LðM � X;R½‘�Þ þ kðf meanðMÞ � bÞ2: ð5Þ
At a glance, we introduce a new parameter k to weigh two terms in
the objective function. But, the last term does not have an impact on
the visualization image X; thus, during optimization, we can simply
set k to increase as the first term increases to achieve the area con-
straint exactly. To find a b automatically, we use Otsu thresholding
method [38] to determine the area ratio adaptively:

H ¼
XK

k

R½‘�
:;:;k; ð6Þ

T� ¼ argmaxTx0ðTÞx1ðTÞðloðTÞ � l1ðTÞÞ2; ð7Þ

b ¼ f meanð1ðH > T�ÞÞ; ð8Þ
4

where H is the attribution intensity map, which can specify the pro-
portion of contributing neurons. x0 and x1 are probabilities of two
groups that are separated by the thresholding value
T 2 ½f minðHÞ; f maxðHÞ�. l0 and l1 are the mean values of the two
groups. We set the number of bins for the Otsu method at 200,
where the minimum and the maximum of bins are set at the min-
imum and the maximum of the attribution intensity map H. The
operator 1ð�Þ returns a matrix where the value is 1 when the condi-
tion is true. In addition, according to the amount of content we need
to display, the mask constraint parameter b can also be selected
manually.

3.4. Fractal noise pyramid

In this section, we discuss several common perturbation tech-
niques and define our perturbation operator M � X. The mask here
is used to find pixels that do not affect the visualization loss even if
these pixels are ‘‘deleted”. While conceptually simple, there are
several problems with this idea. The first one is how to specify a
perturbation method to delete information. There are three obvi-
ous proxies: blurring the image, replacing the image region with
a constant value, and that with random noise. Then these perturba-
tion operators can be defined as follows:

ðM � XÞðnÞ ¼

X
v2X

jðn�v;rmaxð1�MðnÞÞÞXðvÞ
X
v2X

jðn�v;rmaxð1�MðnÞÞÞ
;

where;jðu;rÞ ¼ e�
uk k2
2r2 ;

ð9Þ

M � X ¼ M � Xþ ð1�MÞC; ð10Þ

M � X ¼ M � Xþ ð1�MÞ � B; ð11Þ
where MðnÞ is the value of the pixel n. X is a discrete lattice of the
blurring kernel j defining the kernel size. rmax is the maximum iso-
tropic standard deviation of the kernel. The operator �k k2 means 2-
norm of a vector. C is the constant value which could be 0 or average
color. B is the random noise with the same size as X. Blurring an
image (Eq. (9)) or replacing with a constant value (Eq. (10)) is the
most common idea of achieving a mask perturbation. However, in
the iterative optimization of visualization, blurring the image of
the previous iteration fails to produce stable perturbation to the
newly updated visualization, because the visualization itself is also
updating in every iteration. As another option, using a constant
value may cause the optimization process to fall into a specific
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mode (e.g., adversarial artifacts), because it is plain in the frequency
domain [39]. Thus, we choose pixel replacement with random noise
(Eq. (11)) in our visualization method.

Solving the first problem points out the second problem simul-
taneously, i.e., how to generate the noise. Intuitively, sampling
noise from a Gaussian random distribution in the time domain is
the most common solution. However, in practice, the visualizations
generated based on Gaussian noise often contain discontinuous
points and over-saturated colors. According to the study on the
influence of frequency information on robustness [40], we find that
this problem is due to the fact that the power spectrum of Gaussian
noise, which approximately subjects to a uniform distribution, is
not common in natural-looking images. Additionally, the uniform
distribution can easily lead to adversarial artifacts during visual-
ization optimization.

For random noise generation, there has been another observa-
tion in signal processing that many forms of ‘‘natural” random
images have F�p=2 frequency spectra, i.e., their spectra fall off as
the inverse of some power of the frequency where the power is
related to the fractal dimension. In this context, we generate the
noise by simulating natural signals in the frequency domain. In
particular, this method first generates random noise in the fre-
quency domain, uses desired F�p=2 to adjust the scale, and then
performs inverse Fourier transform back to the time domain to
obtain a random image that conforms to the spectral representa-
tion of natural images.

Although the ‘‘natural” spectra provide more reasonable pertur-
bation information, the frequency component is still simple, which
also makes the optimization process tend to produce meaningless
artifacts. To solve this problem, we further design the fractal noise
pyramid which enables to select fractal noises with different inten-
sities in the frequency domain to perturb the visualization image
according to the mask values. The mask value closing to 0 corre-
sponds to strong noise perturbation; thus, we apply noise in rela-
tively light and correlated sequences with a higher magnitude
level, otherwise, perturb visualization image with noise in dark
and uncorrelated sequences. With this idea, noise pyramid

B 2 RW ½0��H½0��K ½0��ðDþ1Þ is defined as:

Bd ¼ f iftðgðd;DÞÞ; ð12Þ
Fig. 4. Image examples used in our experiments. Objects contained in images from
left to right: Row 1: tabby cat and vase, Australian kelpie and mountain bike, gazelle
and jeep; Row 2: Labrador retriever, cellular telephone and ballpoint, Labrador
retriever and cardigan corgi; Row 3: indigo bunting, American goldfinch, red-
headed woodpecker.
gðd;DÞ ¼ aB0ðd;DÞ � F�p=2; ð13Þ

where f ift is the inverse Fourier transform function. The number of
pyramid layers is Dþ 1 with an index d ¼ 0; . . . ;D. B0ðd;DÞ is the
sampled result from a complex distribution where both the real
and imaginary parts are subject to the normal distribution

Nð0; ð0:2� d=ð20DÞÞ2Þ. Referring to the definitions of pink noise
(p ¼ 2) and Brownian noise (p ¼ 4), we set p ¼ 3� d=D to reflect
the increase in the number of spectral components. F stands for
the sample frequencies of the discrete Fourier transform. a is the
scaling parameter to adjust the complex coefficients that can be
selected based on the image size. The generated noise pyramid

B 2 RW ½0��H½0��K ½0��ðDþ1Þ contains Dþ 1 progressively weaker versions
of noise images. Then, the perturbation operator can be defined as:

ðM � XÞðnÞ ¼ ðM � XÞðnÞ þ ð1�MðnÞÞ � Bðn;MðnÞÞ: ð14Þ

where the last term can be interpreted as that the mask range is
divided into Dþ 1 intervals, then, the corresponding noise accord-
ing to the mask value in current pixel n is selected. Finally, the attri-
bution visualization can be optimized using the objective function
Eq. (5).
5

4. Experimental results

To evaluate the major difference between our proposal and pre-
vious studies, we first qualitatively compare our attribution visual-
ization with several state-of-the-art visualization methods in
Section 4.1. Then, we conduct an ablation study using several alter-
native mask-perturbation techniques to show better performance
of our proposal in Section 4.2. Further, to demonstrate the intu-
itiveness of our method, we perform user studies comparing with
several post hoc visual explanations in Section 4.3. Finally, we
show what our visualizations can represent in the last experiment,
i.e., attribution visualizations in different layers of GoogLeNet and
ResNet-50 [41] and visualizations of grouped attributions in
Section 4.4.

The top six images in Fig. 4 licensed under Creative Commons
Attributions CC-BY 4.0 that are downloaded from the URL:
https://unsplash.com/. The bottom three images in Fig. 4 are
selected from Caltech-UCSD Birds 200 (CUB-200) [42] dataset.
Our quantitative evaluation experiment utilized these images
along with 100 randomly selected images from the ImageNet
[43] validation set and 100 bird images from CUB-200. Notably,
most of our experiments are performed using a GoogLeNet trained
on ImageNet, but the experiments using the bird images are based
on a GoogLeNet trained on the CUB-200 dataset.

The optimization algorithm is Adam [44] and the learning rate
is decayed exponentially based on loss change. Our image regular-
izer is empirically set as padding with 12 pixels, jittering 9 pixels,
randomly scaling from 0:9� to 1:3�, randomly rotating from �12
to 12 degrees, randomly shearing from �4 to 4 degrees, jittering
4 pixels, and cropping or padding to the original image size. The
image padding mode is reflection. The parameter k to balance
the two terms in the objective function Eq. (5) is set at the sum
of attributions initially and multiplied by 1:2 at every tenth of
the lifetime. We set D ¼ 5 to generate a six-layer noise pyramid
and apply SVD color decorrelation to the fractal noise to get a color
space with better visual effects. The rmax for the perturbation of the
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blurring image is 0:2 and the blurring kernel size is 5� 5. C is set at
0:5 for the perturbation of replacing with a constant value. Gaus-
sian noise is sampled from the standard normal distribution. The
amplitude spectrum results using different perturbation tech-
niques are shown in Fig. 5. We can find only the fractal noise pyra-
mid can produce diverse and natural spectrum among all
perturbation techniques. Such advantages are crucial for producing
noise-free visualizations, as shown in qualitative comparison
results in Section 4.2.
4.1. Comparison of visualization methods

In this section, we compare our visualization method with three
state-of-the-art visualization methods of representing feature
implications [10,11,13] and our no-mask visualization method.
Many previous studies focused on improving visual effects by
designing image regularization techniques. However, we directly
adopt the most advanced regularizer techniques as discussed in
Section 4. For a fair comparison with previous studies, we thus
Fig. 5. Amplitude spectrum results using different perturba

Fig. 6. Visualizations in the mixed4d layer with different methods using the image of
Visualizing factorized feature maps [11]. (c) Visualizing class-targeted neurons [13]. (d) V
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use the same image regularizations for all tested methods. There-
fore, the visual effect of visualization results of previous methods
we implemented may be slightly different from the results in the
original papers. For example, the colors of the visualization results
in [13] may look more over-saturated than ours. We believe that a
unified visual effect better allows readers to focus on the major dif-
ference between our proposal and previous studies, i.e., the ability
to generate noise-free visualizations.

Fig. 6 shows the visualizations generated using different visual-
ization methods using a GoogLeNet pre-trained on ImageNet. More
experimental results can be found in A. We can find it difficult to
distinguish meaningful features in the visualization results from
the surrounding noise or artifacts with previous visualizations
and our attribution visualization without mask. As an example
shown in Fig. 6c, their method [13] distinguishes the feature differ-
entiation between different output classes. But without filtering
out irrelevant neuron features during optimization, noise irrele-
vant to the particular class appears in the visualization results. In
the result of the ‘‘Tabby” class in Fig. 6c, neurons may be related
tion techniques. This image is best viewed on screen.

the cat and vase in the top left of Fig. 4. (a) Visualizing all feature maps [10]. (b)
isualizing attributions without mask. (e) Visualizing attributions with mask (ours).



Table 1
Top attributes of the indigo bunting bird in the bottom left image of Fig. 4.

Attribute Type Attribute

Bill shape Cone
Wing color Blue
Crown color Blue
Eye color Black
Upperparts color Blue
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to the vase and the background produce a lot of misleading noise,
which makes us unable to understand which features really con-
tribute to the cat. Although heatmaps can alleviate this problem,
the noise-free visualizations are more intuitive and clearer for ana-
lyzing feature implications. For our no-mask case, we apply our
visualization technique directly to attributions but remove any
mask-related parts, as shown in Fig. 6d. Similar to previous results,
the large amount of extraneous information generated prevents us
from accurately distinguishing class-targeted contributing features
from noise. By proposing the fractal noise pyramid to apply the
area-constrained mask to visualization process, our visualizations
can remove meaningless noise around the target object.

Fig. 7 shows similar results generated with a GoogLeNet pre-
trained on CUB-200 using the indigo bunting image in the bottom
left corner of Fig. 4. One major benefit of CUB-200 is the inclusion
of detailed attributes of the bird in each image. With the attribute
information, we further evaluate whether the visualization method
is able to demonstrate major attributes. The top five attributes of
the indigo bunting are shown in Table 1. While an exact quantifi-
cation of the assessment may not be available, it is evident that
our visualization method is the only one capable of clearly reflect-
ing these attributes.

In addition, the attribution visualizations are inherently class-
targeted. Both visualizing feature maps together [10] and visualiz-
ing factorized feature maps [11] cannot directly express the rela-
tionship between the visualization and the particular output.
Note that, if attributions are used to post-process the factorized
feature maps, class labels could be assigned to these visualizations.
Fig. 7. Visualizations in the mixed4d layer with different methods using the image of the
Visualizing factorized feature maps [11]. (c) Visualizing class-targeted neurons [13]. (d) V
(f) The original indigo bunting image used in the experiment.

7

However, since the factorization information has been determined
before visualizing, this processing cannot assess the coupling in
spatially similar classes. For example, the idea in [11] is to factorize
all feature maps according to neuron spatial distributions; but if
two cat classes come from the same image region, this method will
entangle features related to these two classes. By detecting and
visualizing class-targeted neurons [13], Fig. 6c and Fig. 7cx can rep-
resent feature meanings related to a particular output. Different
from these methods, our attribution visualization is naturally
class-targeted, because neuron attributions are essentially neuron
contributions to the particular output. As long as the attribution
calculation is reliable, our visualization method can accurately rep-
resent the meanings of the contributing features.

4.2. Ablation study on perturbation techniques

In this section, we evaluate resulting visualizations using our
methodwithdifferentmaskperturbation techniques.Different from
indigo bunting in the bottom left of Fig. 4. (a) Visualizing all feature maps [10]. (b)
isualizing attributions without mask. (e) Visualizing attributions with mask (ours).
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bothGaussiannoise and single fractal noise that only contain simple
frequency information, our noise pyramid can strengthen the influ-
ence of noise on the composed result (i.e., M � X) by strengthening
the magnitude when the image is gradually replaced with noise.
Fig. 8. Visualizations generated using our method with di

8

Fig. 8 shows the impact of different perturbations on visualiza-
tions in the mixed4d layer of GoogLeNet. We find that a single frac-
tal noise cannot express the detailed differences among neuron
attributions. For example, by comparing the first three columns
fferent perturbation techniques in the mixed4d layer.



Fig. 9. Visualization correlation results. The PCCs results are calculated in feature space using GoogLeNets pre-trained on (a) ImageNet and (b) CUB-200, respectively. The left
three data series in the figure legend are ‘‘All Feature Maps”, ‘‘Factorized Feature Maps”, and ‘‘Class-Targeted Neurons” corresponding to the methods proposed in [10,11,13],
respectively. The right six data series correspond to our visualization methods without mask perturbation and with five different perturbation techniques.
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of the top row, we find that the region of the cat’s leg has smaller
contributions (in green circle), but the visualization results gener-
ated using single fractal noise do not weaken this image region (in
red circle). In addition, given a particular network, a single magni-
tude level sometimes produces artifacts in unrelated image regions
during optimization, such as the green illusion in the bottom right
region (in red circle) in the third column of the third row and of the
last row. For Gaussian noise, we find that there are always many
discontinuous noise dots in the results, e.g., the red circle in the
fourth column of the fifth row. According to the consequence of
previous adversarial sample research [40], this type of spectra
makes it easier for the network to fall into adversarial artifacts.
Fig. 8 also shows that neither blurring image nor constant value
can effectively express ‘‘natural” perturbation to generate clear
visualizations, e.g., red circles in the last two columns of the fourth
row. When perturbing by image blurring, depending on the
selected padding mode, fuzziness may appear at the corners (in
red circle) as shown in the fifth column of the first row. We simply
use the reflection mode, but we speculate that a carefully designed
method of edge region processing may be able to solve the prob-
lem. Compared with all these alternatives, we find that our method
Fig. 10. Classification consistency results, i.e., the fraction of successfully recognizing the
calculated using GoogLeNets pre-trained on (a) ImageNet and (b) CUB-200, respectively

9

can more clearly and intuitively show the implications of features
contributing to the particular output.

Based on these visualization results, we next assess these
results generated with different perturbation techniques using
two metrics, i.e., visualization correlation and classification consis-
tency. The inspiration for this experiment is derived from [10] with
some modifications made to the metric details to suit modern
CNNs like GoogLeNet. These modifications are discussed in detail
below.

Visualization correlation. This metric is used to test whether
the visualizations could successfully achieve their goal of repre-
senting neuron attributions, i.e., feature maps generated by for-
warding a visualization into the network should be proportional
to the corresponding attributions. This metric can be considered
as a validation of the objective in Eq. (5). The visualization correla-
tion is tested in terms of Pearson correlation coefficients (PCC)
between the newly produced feature maps and the attributions
at the neuron level. A good visualization should produce a high cor-
relation score as it means that the method can successfully repre-
sent neuron attributions.
particular class when forwarding the visualizations into the network. The results are
.



Fig. 12. Preference ratio for different visual explanations.
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The experiment is repeated for all tested layers of GoogLeNet
and different perturbation techniques. For the methods using fea-
ture maps to generate visualizations, we just evaluate PCCs using
the feature maps to replace the corresponding attribution scores.
The resulting correlation score is assessed by reporting the average
of PCCs over all tested images. Given every tested image, 25 differ-
ent initializations are used to reduce the interference of random
errors. As shown in Fig. 9, the average scores show that using our
noise perturbation pyramid can produce the highest correlation
score which means our visualizations are the best to represent
exact information of attributions.

Classification consistency.With previous visualization correla-
tion results, one question that may arise is whether a correlation of
0:6, or even 0:5, is good enough to represent neuron attributions.
Scores above 0:5 can only show that the visualization expresses
most of the attribution information rather than perfect representa-
tion. To assess to what extent important parts of attributions are
represented in our visualizations, we report the classification con-
sistency, which is the fraction of visualizations that the top-5 out-
put classes of the network contain the particular class, as shown in
Fig. 10. Note that, as visualizing factorized feature maps [11] gen-
erate multiple results, we accumulate the activation values of all
these results to make a classification prediction. It is known that
attributions stand for the neuron contributions, i.e., given neuron
features enhanced in proportion to attribution scores, a high out-
put score should be assigned to the particular class. If the visualiza-
tion perfectly represents the neuron features, then the
classification consistency result of this visualization should be
one. It also expresses that the visualization does not drop the
semantics of the original object from the network viewpoint.

The results in Fig. 10 show that our proposal outperforms other
alternatives. Moreover, despite the low PCCs from the layers mix-
ed3b–mixed4d, the classification consistency results are always
good from the layers mixed3b–mixed5b. This may be because
the network can produce a high classification score if some of
the most contributing neurons are highly activated. But in the mix-
ed3a layer, both PCC score and classification consistency are the
Fig. 11. An example of the survey of user preference. The 15 Methods include 1) Grad
GradxInput [15], 6) DeepSHAP [46], 7) NeuronIG [27], 8) IG Noise [47], 9) visualizing class
11) our visualization method with mask perturbation of fractal noise, 12) Gaussian no
example, ‘‘Tabby cat” is the top-1 class and ‘‘Siamese cat” is the class from top 2 to 5 cl
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worst among all tested layers. To figure it out, we forward the attri-
butions into the network and find that the top outputs are irregular
and cannot correspond to the particular class. This shows that the
attributions in this layer may not represent the neuron contribu-
tions to the output well. The Aumann–Shapley method satisfying
several desirable properties aims to calculate the marginal contri-
butions of individual neurons. However, whether the definition of
‘‘contribution” should be constant for different layers remains
open. For example, since the low-level features are local, then
the impact of their combination may be far greater than that of
individuals. Thus, in addition to the marginal contribution of an
individual neuron, the influence of feature combinations and inter-
actions should probably be assigned a greater weight when calcu-
lating the attribution scores. Nevertheless, for attribution
visualizations, using the fractal noise pyramid as a perturbation
means better visual quality.
CAM [45] 2) LRP [16], 3) DeepLIFT Rescale [17], 4) DeepLIFT RevealCancel [17], 5)
-discriminative feature groups [37], 10) visualizing class-targeted feature maps [13],
ise, 13) blurring image, 14) constant value, and 15) fractal noise pyramid. In this
asses. It is better to zoom in on the screen to see this screenshot of the survey.



Fig. 15. Ratio of times a visual explanation was found to contain understandable
semantic information of an image class. The four Methods include LRP (Method 2),
visualizing class-discriminative feature groups (Method 9), our visualization
method with mask perturbation of fractal noise (Method 11), and fractal noise
pyramid (Method 15).

Fig. 14. Attribution visualizations for generating the example of the survey.
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4.3. User studies of visual explanations

In this experiment, we implement two user studies to evaluate
which post hoc visual explanation is more intuitive and meaning-
ful to humans. Before going deep into the details of the experiment,
we first introduce visual explanations used in these user studies
and the basic information of participants. In our experiments, we
show different visual explanations in random order. But for clarity,
here in the paper, we introduce 15 methods of generating visual
explanations used in the experiment with a fixed order. All visual
explanations are generated in the layer mixed4d of GoogLeNet.

Visual explanations of methods 1–8 are generated using seven
attribution methods, including GradCAM [45], Layer-wise Rele-
vance Propagation (LRP) [16], Deep Learning Important Features
(DeepLIFT) Rescale and RevealCancel [17], GradxInput [15], Deep
Shapley Additive Explanations (DeepSHAP) [46], NeuronIG [27],
IG Noise [47]. Although other methods except NeuronIG were orig-
inally designed to calculate pixel attributions, they can be applied
to calculate neuron attributions with small modifications. With
these attribution methods, we calculate neuron attributions and
generate heatmaps by summing attribution results along the chan-
nel dimension. However, for similar classes, only observing attri-
bution heatmaps cannot provide an understandable visual
explanation of attribution results. For example, we cannot under-
stand the differences between the features of the two cat classes
only using the heatmaps of methods 1–7, as shown in Fig. 11. To
make the experiment more assessable, we thus visualize these
attributions using our visualization method without a mask, as
shown in the figures below the heatmaps. Visual explanations 9
and 10 are generated by visualizing class-discriminative feature
groups [37] and class-targeted feature maps [13], respectively.
Visual explanations 11–14 are generated using our method with
four mask perturbation alternatives, which are fractal noise, Gaus-
sian noise, blurring image, and constant value. The visual explana-
tion 15 is our attribution visualization with a fractal noise pyramid.

In these user studies, we recruited students from three univer-
sities to fill out an online survey and received 32 responses. Among
these 32 participants, 19 have CNN research experience, 13 are or
were computer science majors but not familiar with deep learning.

Preference matters. In this user study, user preference for a
visual explanation is evaluated. An example of the survey is shown
in Fig. 11. We first generated visual explanations of two classes
Fig. 13. An example of the surve

11
with the methods mentioned above using 15 images. The inter-
preted classes were the top-1 output class and one randomly
selected class from the second to fifth results. As a reference for
the class information, we provided five free images found by a
commercial search engine for each of these two classes in the
study, as shown at the bottom of Fig. 11. In a user study of each
image example, participants were asked to select the top-3 intu-
itive and clear visual explanations from all 15 pairs of results
arranged in random order. The scores assigned to the top-3 selec-
y of visualization meaning.
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tions and the ones not selected are 3, 2, 1, and 0, respectively.
Fig. 12 shows the fraction that a visual explanation was found to
be intuitive and clear. The top-4 methods considered intuitive
are our attribution visualization with the fractal noise pyramid,
visualizing class-discriminative feature groups, our visualization
with fractal noise, and LRP. Based on these results of preferences,
we speculate that our method is preferable to human intuition.

Meaning matters. In this user study, we evaluate whether the
visualization contains understandable semantic information about
Fig. 16. Visualizations in different layers

12
the targeted class. An example of the survey is shown in Fig. 13.
The attribution visualizations used for generating the example sur-
vey are shown in Fig. 14, but note that the original image and the
entire visualizations are not shown in the actual survey. We
selected 15 other images and generated visual explanations with-
out heatmaps in this experiment with the resulting top-4 methods
in the previous user study. The four methods include LRP, visualiz-
ing class-discriminative feature groups, our visualization method
with mask perturbation of fractal noise, and fractal noise pyramid.
of (a) GoogLeNet and (b) ResNet-50.



Fig. 17. Visualizations based on all attributions (left) and grouped ones (right) in
the mixed3b layer.

Fig. 18. Visualizations based on all attributions (left) and grouped ones (right) in
the mixed4d layer.
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The interpreted classes were the top-1 output class and two ran-
domly selected classes from the second to fifth results. We also
provided five images as references of a class like the previous
study, as shown in the right part of Fig. 13. In a user study of each
image example, participants were asked to select the class label
corresponding to this visualization from three options of class
labels. Fig. 15 shows the fraction that a visual explanation was
found to be meaningful to a class. The results of visualization
meaning show our method can more intuitively represent real
semantics related to an output class.

4.4. Attribution visualization of different layers

In this section, we analyze the attribution (group) visualizations
in different layers using GoogLeNet and ResNet-50 which have
been applied to many vision applications as backbone networks.
Through layer-wise attribution visualizations, we can intuitively
compare the differences between the feature propagation rules of
these two networks.

GoogLeNet can be partitioned into five parts, of which conv1
and conv2 extract low-level image features such as various colors,
lines, and contours. These simple image features do not yet pro-
duce semantic information related to the particular class. Then,
as the features are forwarded to deeper layers, the features with
intuitive semantics appear in mixed3, mixed4, and mixed5.
Fig. 16a shows the attribution visualizations in these layers. The
progressive relationship among these layers is remarkable. In the
first few layers (conv1–conv2b), the visualizations show Labrador
images like crayon or watercolor paintings, which are produced
by the arrangement and combination of low-level features, e.g.,
colors, lines at different angles, and various shapes. These visual-
izations indicate the convolutional layers that most affect the
visual content and styles in neural style transfer, thereby enabling
different networks to be applied to style transfer with different
architectures [48]. In the layers mixed3a–mixed4e, the visualiza-
tions show a relatively complete dog’s head. Unlike previous visu-
alizations like watercolor paintings, the head details indicate that
low-level features are combined into object-specific features. But,
in deeper layers (mixed5a–mixed5b), the geometric information
almost disappears, and the abstract feature implications seem to
make little sense to human intuition.

ResNet-50 can also be partitioned into five parts, of which con-
v1, block2, and block3 extract low-level image features. The fea-
tures with object semantic information appear in block4 and
block5. Despite different network architectures, the feature
abstraction of ResNet is similar to GoogLeNet, as shown in
Fig. 16b. For instance, crayon and watercolor paintings appear at
similar stages (block2 and block3). In the following visualizations,
the illusion of the dog’s head also appears in both mixed4 and
block4. But, because there are more layers in ResNet-50, the fea-
ture abstraction is achieved more gradually.

The residual architecture of ResNet contains several convolu-
tional layers and residually connects the input and the output of
the stage. Therefore, compared with GoogLeNet, features extracted
by ResNet-50 seem to be forwarded from the lower layer to the
deeper layer more easily. As an example, the heatmaps and the
visualizations in the layers block4a–block5b of ResNet-50 are more
consistent than that of similar layers (i.e., mixed4a–mixed5a) of
GoogLeNet, as shown in Fig. 16. Comparing the visualization
details of these two networks, we find that the features used by
ResNet-50 for classification could be more reasonable. For instance,
the white fur features appear in the layers block4a–block4f, indi-
cating that in addition to the head features, ResNet-50 can also
extract useful information from the body region. The visualizations
in these layers preserve white fur like the input image. But the
visualizations of the layers mixed4a–mixed4e of GoogLeNet repre-
13
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sent colored hairs, because most Labrador retrievers in the dataset
are black and yellow. This difference may be because there are
almost twice more channels in a convolutional layer in ResNet-
50 than that in GoogLeNet at a similar convolutional stage which
may allow more capacity to memorize white-haired Labrador dogs
as well as colored ones. With attribution visualizations, we can
intuitively understand the feature abstraction among layers and
compare the differences between different layers or different
networks.

The visualizations in other experiments are generated using all
attributions in a hidden layer together. However, some features
with meaningful semantics but low contributions may be ignored
in this case. Therefore, we further use factor analysis to decompose
attributions with the same class label to obtain the grouping infor-
mation as the technology proposed in [37]. Given new attributions,
we can decompose them into several groups based on the grouping
indices and then visualize them separately. The visualization
results in the mixed3b and mixed4d layers are shown in Fig. 17
and 18. The visualized classes are ‘‘Vase”, ‘‘Australian kelpie”, and
‘‘Labrador retriever”, respectively. The integral visualization is a
combination of several group visualizations. For example, in the
bottom row of Fig. 17, we find the integral result seems to be an
abstract mix of the four group visualizations on the right.

The major advantage of group visualization is the ability to
show some ignored features with small contributions but have
meaningful semantics. For example, in the top row of Fig. 18 (the
vase image), because the feature contribution from the flower
region is much higher than the vase itself, both integral visualiza-
tion and attribution heatmap cannot effectively display the vase
features. However, the group visualization results can clearly show
that the vase itself also contributes to the ‘‘Vase” class. In the bot-
tom row of Fig. 18 (the Labrador retriever image), the dog’s body
does not contribute much to the ‘‘Labrador retriever” class; thus,
there is almost no body part in the integral visualization. However,
the decomposed results can highlight and visualize the body fea-
tures with less contribution.

On the other hand, this advantage may be trivial in the lower
layer where semantic information related to the class has not been
extracted. Features extracted in these layers are only lines, shapes,
etc.; thus, the semantic discrimination among visualization results
is not obvious. For example, in the top row of Fig. 17, it seems that
the shape of the cat’s ear contributes to the ‘‘Vase” class. Even if we
use group visualizations to distinguish these feature regions, we
still cannot get more meaningful semantic understandings. A sim-
ilar problem also appears when feature distribution is highly con-
centrated. For example, in the second row of Fig. 18, as the features
related to the ‘‘Australian kelpie” class are all concentrated on the
dog’s face, group results also cannot show obvious discrimination.
We believe that attribution decomposition is more suitable as a
supplement, but sometimes it indeed reveals important informa-
tion that may be ignored in the integral attribution visualization.

5. Conclusion

We propose the attribution visualization method to understand
contributing neuron features. The core of our method is to intro-
duce the mask concept into the visualization objective function
with an area-constraint regularizer and design the fractal noise
pyramid as a dynamic perturbation. According to the mask, fractal
noises with different intensities in the spectrum of spatial frequen-
cies are designed to perturb the updating visualization to produce
14
natural-looking visualizations and suppress various noises during
optimization. For evaluation, we use two metrics, i.e., visualization
correlation and classification consistency, to quantitatively assess
the influence of different perturbation techniques. Our method
with the fractal noise pyramid shows competitive results on these
metrics. We also conduct several qualitative experiments including
user studies to verify the effectiveness of our attribution
visualizations.

Our work still has some limitations which need to be explored
in the future. First, our visualization method is not currently avail-
able for reversely improving attribution calculation. It would be
valuable to correct the attribution calculation method using visual
feedback, especially in some delicate situations such as adversarial
samples, which could further improve the reliability of network
decisions. Second, our method requires users to manually specify
visualization regularizers and select corresponding hyperparame-
ters. An adaptive selection technology for regularizers would be
beneficial in this regard. Finally, visualization evaluation metrics
are still insufficient, especially the lack of quantitative metrics.
Designing a dependable and impartial evaluation metric to
enhance the validation of visualization results remains a fascinat-
ing subject. As research in this area continues, we plan to extend
the proposed visualization method to encompass more sophisti-
cated architectures, e.g., vision systems based on multiple-layer
perceptrons (MLPs), vision transformers, and multimodal
networks.
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Appendix A. Supplementary experimental results

We test the visualization methods stated in Section 4.1 on the
other two images from Fig. 4. Fig. A.19 and A.20 show our results
can more clearly represent feature implications than other meth-
ods without a mask.



Fig. A.20. Visualizations using an image containing gazelles and a jeep in the mixed4d layer with different methods.

Fig. A.19. Visualizations using an image containing a kelpie and a mountain bike in the mixed4d layer with different methods.
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