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Visualization Comparison of Vision Transformers
and Convolutional Neural Networks

Rui Shi, Tianxing Li, Liguo Zhang, Yasushi Yamaguchi

Abstract—Recent research has demonstrated that Vision
Transformers (ViTs) are capable of comparable or even better
performance than convolutional neural network (CNN) baselines.
The differences in their structural designs are obvious, but our
understanding of the differences in their feature representations
remains limited. In this work, we propose several techniques
to achieve high-quality visualization of representations in ViTs.
Both qualitative and quantitative experiments show that our
technical improvements can observably improve ViT visualization
quality compared to previous studies. Furthermore, we conduct
visualizations to explore the disparities between ViTs and CNNs
pre-trained on ImageNet1K, revealing three intriguing properties
of ViTs: (a) ViT feature propagation retains image detail informa-
tion with minimal loss, whereas CNNs discard most image details
for class discrimination. (b) Different from CNNs, object-related
features do not show in ViT higher layers, suggesting that class-
discriminative features may not be required for ViT classification.
(c) Our visualization-assisted texture-bias experiment reveals that
both ViTs and CNNs exhibit texture bias, of which ViTs seem to
be more biased towards local textures.

Index Terms—Vision Transformer, convolutional neural net-
work, feature representation, optimization visualization.

I. INTRODUCTION

OVER the past several years, convolutional layers have
served as de facto standard building blocks for al-

most every vision tasks [1], [2]. This is mainly due to
the powerful inductive bias of spatial locality encoded by
convolutional operations and the low number of parameters.
Recently, motivated by the tremendous success of attention-
based Transformer networks in natural language processing
tasks, researchers have developed Vision Transformers (ViTs)
[3] which are capable of achieving equal or better performance
than state-of-the-art ResNets [4] of similar capacity [5]. Subse-
quently, more advanced network architectures, such as Shifted
windows Transformer (SwinT) [6], have been proposed that
integrate the fundamental principles commonly utilized in con-
volutional neural networks (CNNs) and Transformers. These
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networks operate nearly identical to Transformers deployed
in language models–with an attention block followed by a
multilayer perceptron (MLP) block, but this is obviously in
contrast with many prior convolution-based studies focusing
on incorporating image inductive biases explicitly.

Such a breakthrough motivates us to study the differences
in feature representations between ViTs and CNNs. Are ViT
feature propagations similar to CNNs? Or are ViTs developing
novel feature representations? In this work, we investigate
these questions and provide insights about several key dif-
ferences between them by achieving optimization visualiza-
tion in ViT. Although our research primarily focuses on the
ViTs proposed in [3], we also assess the viability of the
proposed method in our experiments using other sophisticated
Transformer-based networks, such as SwinT. Generally, op-
timization visualizations are based on the fact that a vision
neural network is differentiable with respect to its input image;
thus, gradients can be used to iteratively update the input
image to seek the kind of image whose feature representations
are notable in some meaningful sense.

Specifically, in this work, we mainly focus on two visualiza-
tion ideas (i.e., inversion and representation maximization) that
have been extensively studied to understand CNNs but are still
challenging to apply to ViTs. In the first type, called inversion
(Sec. III), we reconstruct feature representations of an input
image to uncover the feature diversity of identical representa-
tions. We do so by computing a representation Φ0 = Φ(x0) of
the image x0. Then, we update a randomly-initialized image to
reconstruct the information of the representation Φ0. Notably,
a representation Φ is not invertible because it is commonly
invariant to some nuisance factors such as perspectives and
illuminations [7]. We can analyze the invariance by studying
the representation reconstruction x∗ that shares the (nearly)
same feature representation with x0 and observe the loss
of image information during feature propagation using the
inversions of all layers.

In the second type, referred to as representation maxi-
mization (Sec. IV), also called “activation maximization” [8],
we look for an image x∗ that maximally excites a certain
channel feature of the representation Φ. The updated image x∗

is representative of the visual stimuli capable of expressing the
implication of a channel or a selected component of feature
representations. Differently from inversion, maximization vi-
sualization separates the certain channel implication from the
meanings of representation combinations.

While conceptually simple, there are two particular chal-
lenges caused by the ViT structure when generating natural-
looking visualizations. First, patch-based processing produces
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Fig. 1. A visualization full of patch artifacts generated with [8]. This inversion
visualization is generated using the feature representations extracted from
the 11th layer of ViT-B/16. The optimization strategy and regularization
methods employed in this visualization are consistent with those described
in the original paper. We can observe disjoint patch edges everywhere in the
image as well as some noises indicated with red circles.

Fig. 2. An overview of the patch-based processing of ViTs. The input image is
split into fixed-size patches, which are then linearly projected. Next, position
and patch embeddings are added to these projected patches to form the input
for ViT encoders. The illustration was inspired by [3].

many patch artifacts, e.g., disjointed patch edges and noise
marked by red circles in Fig. 1. Different from CNNs, ViTs
first divide the input image into several non-overlapping
patches, which are then linearly projected into embedded
patches to serve as input to the Transformer encoder, as shown
in Fig. 2. This patch-based processing enables ViTs to scale to
higher resolutions, but it also results in a distinctive trend of
receptive field variation that differs from CNNs. As discussed
in [1], [5], ViT receptive fields show a strong dependence on
a single patch and do not grow as gradually as CNNs, i.e.,
the gradients of a single patch have little effect on the other
patches, and therefore there is no guarantee that the edges
between patches are consistent during optimization. Second,
the attention-based structure of a ViT sub-encoder is very
different from a convolutional block, as shown in Fig. 3. The
self-attention mechanism is widely acknowledged to be highly
informative, as it captures global contextual information from
the entire image [1], [9]. Based on our experiments (Fig. 8), we
observe that if the attention block information is not matched
in inversion visualizations, some important information may
be lost.

In this work, we address these challenges to achieve ViT
visualization and uncover insights about feature representation
differences between ViTs and ResNets. More specifically, our
contributions are as follows:

• We propose to generate ViT visualizations in the fre-
quency domain and design several indirect regulariza-
tions, both of which techniques eliminate patch artifacts.

Fig. 3. Left: ViT sub-encoder structure; Right: convolutional block structure.
The illustration was inspired by [3].

For inversion, we introduce attention matching into the
common objective function to produce clear reconstruc-
tions of feature representations. For representation max-
imization, we visualize positive and negative represen-
tations separately and design a color space transform
strategy to realize natural-looking visualizations. Ablation
study in Sec. V-A demonstrates the importance of pro-
posed techniques to achieve high-quality ViT visualiza-
tions. The programming implementation of our proposal
is available online (https://bit.ly/net-vis-compare).

• By conducting visualization comparisons, we find three
intriguing properties of ViT. First, the ViT inversions
are highly consistent among all layers and retain a large
amount of image detail information, which indicates that
there is almost no information loss in ViT feature prop-
agation. However, CNNs discard a significant amount
of low-level image information to achieve discrimina-
tive representations (Sec. V-B). Second, our analysis of
channel visualizations generated through representation
maximization reveals that ViTs may have a lower number
of object-related features in higher layers compared to
CNNs, despite the fact that these class-discriminative
features are typically considered crucial for predictions
(Sec. V-C). Third, probably due to permutation invari-
ance, ViTs show a stronger texture bias than ResNets and
are more biased towards local textures. Even if the shape
of the original object is completely disrupted, ViTs can
still predict the true label from some patch-level texture
information (Sec. V-D). Additionally, we also conduct
visualization experiments to demonstrate the effective-
ness of our proposed method on other newly developed
networks based on Transformer such as SwinT in Sec.
V-B–V-D and find that SwinT shows the characteristics
both of ViTs and CNNs.

II. RELATED WORK

Optimization visualization, a method of updating random
noise by derivatives into an understandable image, can be
applied to process a large variety of representations due to
its high flexibility.
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Inversion is a visualization method for recovering an image
from specific encodings. The original idea of applying an
energy minimization framework to invert neural networks was
used to study non-image-processing neural networks [10]–
[15] and extended to a variety of CNNs [16]–[19]. To un-
derstand feature connections among layers, Mahendran et al.
[8], [20] explored several techniques of inverting deep CNNs
and innovatively generalized them into a regularized energy-
minimization framework. By exploiting the diversity contained
in feature representations, Yin et al. [7] proposed DeepInver-
sion that balances all-layer feature representations together
to implement knowledge distillation and image generation.
This unique processing approach allows for the synthesis of
class-conditional input images without requiring any additional
information from the original dataset.

Reconstructing the original data by inverting gradients is
another important application scenario of inversion techniques.
Built upon DeepInversion, Yin et al. [21] proposed Grad-
Inversion that inverts gradients and distribution statistics of
normalization layers together to achieve clear input image
reconstruction. More recently, Hatamizadeh et al. [22] in-
troduced a gradient-based inversion method called GradViT,
which successfully enables inversion generation for ViTs. This
represents the first successful attempt at generating inversions
for ViTs. They further proposed several additive regularization
techniques that effectively improve the inversion quality. De-
spite producing remarkably good inversion results, we find it
difficult to apply previous techniques to visualization directly.
For example, image prior regularization designed based on
batch normalization statistics obtained from an additional pre-
trained CNN is a powerful way to generate natural-looking
results; however, image prior implies the statistics of all layers,
while visualization usually focuses on a specific layer only. In
addition, utilizing an additional pre-trained CNN may interfere
with the demonstrated diversity in ViT feature representation
reconstructions. Our inversion method differs from the ones
above as it does not require any hyperparameters of balancing
regularization terms nor any information beyond the visualized
layer.

Representation maximization, is used to maximize the
response of representations in vision networks. We do not
select the name “activation maximization” because there is no
concept of activation in ViTs. By maximizing a class score,
highly realistic images that are related to the output class
from the perspective of a network can be generated [23]–[25].
To understand the implications of individual feature represen-
tations, Olah et al. [26], [27] visualized individual neurons
and neuron combinations with different CNNs and discussed
the meanings of sophisticated feature detectors. Maximization
visualization was also applied to explore feature representation
combinations related to a target output class [28]–[30]. Prior
studies have significantly improved the visual quality and
stability of maximization visualization on CNNs. Built upon
these studies, we further develop several techniques based
on the Transformer structure to achieve ViT maximization
visualization.

Other technically relevant studies are image synthesis and
attribution visualization. For image synthesis, Tancik et al.

[31] extended neural tangent kernel to a stationary kernel
by explicitly modeling Fourier features to achieve the image
and 3D shape regression with high-frequency details. Their
experimental results demonstrated the great potential of fre-
quency domain processing for high-frequency feature learning
in artificial neural networks, which directly inspired us to
improve the visual quality by introducing frequency domain
optimization into ViT visualization. Tesfaldet et al. [32] ex-
tended compositional pattern producing networks (CPPNs) to
generate frequency coefficients to synthesize high-frequency
details which cannot be captured by vanilla CPPNs. Their
experiments also showed that frequency processing can ef-
fectively improve visual quality in image synthesis tasks.

Attribution visualization, also called saliency map [33],
mainly concerned with generating heat maps corresponding
to an output class [33], [34]. Simonyan et al. [35] used
saliency information generated from signed gradients to ex-
plain network outputs. Bach et al. [36] designed several
propagation rules according to hidden layer attributes, and thus
proposed Layer-wise Relevance Propagation (LRP), which
can propagate the relevance information layer by layer to
the input features. More recently, several Shapley-value-based
attribution methods have been proposed, which satisfy desir-
able properties like efficiency, symmetry, linearity, etc [37]–
[41]. These attribution-based visualizations typically produce
heat maps to highlight important image regions. In contrast,
optimization-based visualization methods aim to generate im-
ages that reveal implicit semantic information. In this study,
we adopt attributions to identify important channel features
and generate heat maps as complementary visualizations to
representation maximization.

III. INVERSION

A. Frequency Domain Optimization

Inversion visualization can be formulated as an energy
minimization problem where the goal is to find a visualization
whose feature representations are close to the target repre-
sentations Φ0. Formally, we model feature representation as a
function Φ mapping an input into ViT sub-encoder outputs and
seek the visualization x∗ that minimizes the objective function:

x∗ = arg min
x

L(Φ(x),Φ0), (1)

where x ∈ RH×W×K is initialized randomly and optimized
to generate the visualization result x∗. Φ0 is the feature repre-
sentation of the original image x0. Borrowing from previous
studies [8], [22], the inversion loss function L is set to the L2

distance:

L(Φ(x),Φ0) =
‖Φ(x)− Φ0‖2

‖Φ0‖2
. (2)

The optimization is reconstructing the target representation to
reflect layer information contained in the original image from
the perspective of the network [8].

The paradigm works well in CNNs; however, direct opti-
mization could result in many patch artifacts in ViT visual-
izations, because of the low correlation among the gradients
of different patches. The patch processing makes it difficult
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Fig. 4. Left: original image; Right: transformed image: closing followed by
opening. Morphological operations have the advantage of better maintaining
object contours while blurring internal textures, which contributes to edge-
consistent optimization results.

to solve this problem directly in the spatial domain. To solve
this problem, we note the property that the Fourier transform
can easily access geometric characteristics. More specifically,
modifying a point in the frequency domain can change all
the information in the spatial domain, which allows us to
avoid updating pixels around patch edges individually, thus
alleviating patch artifacts. Instead of manually designing the
Fourier mapping as in [31], which can adjust the spectral width
and thus affect the reconstruction of different frequencies, we
adopt the original two-dimensional Fourier transform to ensure
that the inversion is not disturbed by the manual selection
of high and low frequencies outside the network. With this
idea, we transform visualization optimization from the spatial
domain to the frequency domain. The inverse discrete Fourier
transform along the color channel is:

x(h,w, k) =
1

HW

∑
u,v

F(u, v, k)e2π(
uh
H + vw

W ), (3)

where h,w, k are indices of height, width, and color channel,
respectively. F(u, v, k) is the Fourier coefficient for the given
frequencies u, v under the channel k.  =

√
−1. Note that,

since visualization is real-valued, we just ignore the imaginary
part of the result computed by the inverse Fourier trans-
form. For simplicity, we will use fift to represent the inverse
transform operation. Then, the objective function Eq. (1) is
transformed to:

F∗ = arg min
F

L
(
Φ(fift(F)),Φ0

)
, (4a)

x∗ = fift (F∗) . (4b)

The introduction of the Fourier transform can also be inter-
preted as adding an image prior that forces the optimizer
to produce a structurally ordered visualization, such that the
objective can be more easily minimized.

B. Image Processing Regularization

Permutation invariance is an advantage of ViTs, but the
lack of integrated constraints among patches causes patch
artifacts in visualizations. To further solve this problem, we
propose to add some perturbations with randomness to the
image inner contours, forcing the optimization process to find
edge-consistent results and thus avoiding the patch artifacts.
Adding regularization terms such as total variation and α-norm
is a common strategy to achieve constraints, but it introduces
additional hyperparameters and cannot achieve good patch
consistency in ViT visualization. More discussion and exam-
ples can be found in the Sec. D of the supplementary materials.

Inspired by the discussion of regularization techniques [42],
we discard direct regularization and choose to develop an indi-
rect regularization strategy for ViTs instead. In particular, we
first design two morphology-based regularizers, i.e., random
closing and opening, that apply morphological transformations
to the image with random structuring elements before forward-
ing it to the network. As an example shown in Fig. 4, closing
followed by opening can smooth the internal textures while
maintaining the shape, thus contributing to edge-consistent
optimization results. Our morphological structuring element
set is defined as follows:

{B(0), B(1), . . . , B(4)}

=


0 1 0

1 1 1
0 1 0

 ,
1 1 0

1 1 1
0 1 0

 , . . . ,
0 1 0

1 1 1
0 1 1

 .

We also select random cropping, a common image augmen-
tation operation, as another indirect regularizer that adds
randomness by shifting the image to enforce the optimizer
to generate crisper visualization. With these image processing
regularizers, the objective function is converted to:

F∗ = arg min
F

Eτ,ε

[
L
(
Φ(fproc(F; τ, ε)),Φ0

)]
, (5a)

fproc (F; τ, ε)

= frc

(
fopen

(
fclose

(
fift(F);B(τ)

)
;B(τ)

)
; ε

)
,

(5b)

where Eτ,ε[·] indicates the expectation of two random vari-
ables τ and ε. For morphological operations, we select a
structuring element from the set B using τ , where τ is
a discrete random variable uniformly distributed in the set
{0, 1, . . . , 4}. ε is also a random variable uniformly distributed
in the set {−T, . . . , T} which means ε pixels are cropped
along width and height dimension, and the space is padded
in reflect mode. Empirically, T can be set at the greatest
integer less than (W+H)/100 for ViT inversion. The ablation
study in V-A shows that both image processing regularization
and frequency domain optimization have significant effects on
artifact removal.

C. Attention Matching

Each sub-encoder is considered as a ViT layer, but different
from a convolutional block, the sub-encoder contains two
important blocks, i.e., the multi-head self-attention (MSA)
block and the MLP block. In CNN inversion, the feature
representation usually refers to the output of the activation
layer in a convolutional block. However, we find that con-
sidering only the final output of the sub-encoder makes the
inversion optimization difficult and does not reconstruct the
feature representation even in shallow layers. Without an addi-
tional constraint, the optimization process cannot construct the
accurate quantities of outputs of these two blocks; therefore,
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Fig. 5. Examples of positive and negative representation maximization. The
positive and negative visualizations are generated with the same channel but
show completely different patterns.

we add an attention matching term using the output of the
MSA block and modify the loss function as follows:

L
(
Φ(fproc(F; τ, ε)),Φ0,Φ

attn
0

)
=
‖Φ(fproc(F; τ, ε))− Φ0‖2

‖Φ0‖2

+
‖Φattn(fproc(F; τ, ε))− Φattn

0 ‖
2

‖Φattn
0 ‖

2 , (6)

where Φattn means the representation function of the attention
block, and Φattn

0 is the representation of the attention block
of the original image. It seems that this newly introduced
attention term needs a hyperparameter to balance, but the range
of differences between two residual-connected blocks is small
that we therefore directly add this term in practice. With these
two references, we can reconstruct representations in a sub-
encoder more accurately, such that clearer inversion can be
generated.

IV. REPRESENTATION MAXIMIZATION

A. Maximization Loss

Representation maximization can express the channel im-
plication by finding a visualization that highly activates the
channel. In previous CNN visualization studies, the maximiza-
tion loss function is defined by summing a channel or several
neurons thereof [23]. In ViTs, it can be obtained similarly by
considering the summation of all patches of one channel:

L
(
Φ(fift(F)); d

)
=

N∑
i=1

Φ(fift(F))(i, d), (7)

where Φ(·)(i, d) stands for the ith patch in the dth channel of
the feature representation. N is equal to one (class token) plus
the patch number (e.g., 1+196 in ViT-B/16). For maximization
visualization, the class token does not contain valid channel
feature information, thus the accumulation starts from i = 1.
In addition, there is no activation function like ReLU before
ViT sub-encoder outputs, i.e., maximizing and minimizing the
loss function can both produce meaningful visualizations in the
channel d. Fig. 5 shows positive and negative visualizations
of two channels in a middle layer of ViT-B/16, and we can
find that the positive and negative maximization values of
one channel correspond to completely different patterns. On
the other hand, maximization visualizations are not directly
correlated with a particular network output; thus, when ana-
lyzing the channel features corresponding to a target output,
we use an Aumann-Shapley-based attribution method [40] to
compute channel contribution scores and detect the channels
contributing to the particular output as stated in Sec. V-C.

Fig. 6. The left side of each pair shows the maximization visualization
without the color space transform, and the right side shows the case with the
color space transform. Although all of them can highly activate the particular
channel, results with the color space transform are more natural to human
eyes.

B. Color Space Transform

Different from the inversion with constrained optimization
objectives, we observe that ViTs cannot maintain reasonable
correlations between image channels during maximization op-
timization. The representation maximization in the frequency
domain produces results that can highly activate the specific
representation but with over-saturated colors, as shown in Fig.
6. Visually, these results are highly similar to the channel-
decorrelated image after the Karhunen-Loève transform (KLT)
[43], which motivates us to apply the color space transform
inversely to constrain the pixels in a range more suitable for
human eyes. The KLT matrix A is defined as:

C =

CRR CRG CRB
CGR CGG CGB
CBR CBG CBB

 (8a)

A =
[
v1 v2 v3

]
, (8b)

where C is the covariance matrix of the image color chan-
nels. The transform matrix A consists of eigenvectors of the
covariance matrix C. Although KLT is data-dependent, the
transform matrices of most images are correlated. Therefore,
to improve optimization efficiency, we randomly select 5000
images from the ImageNet1K validation dataset [44] to cal-
culate the covariance matrices and their eigenvectors, after
which we heuristically average the upper and lower 25%
of the median interval and then orthogonalize the result to
construct the estimated transform matrix Â and the mathe-
matical expectation µ̂. Then the loss function with color space
transform is L

(
Φ(fift(F)Â+ µ̂); d

)
. Note that, after the color

space transform, image processing regularization still needs
to be performed, though we simplify it here for the clarity of
notations.

V. EXPERIMENTS

Considering network throughput capacity and representa-
tiveness, we mainly use ViT-B/16 and ResNet-50 pre-trained
on ImageNet1K [44] in our qualitative experiments, which
have become backbone networks in many vision tasks. We
also introduce another Transformer-based network pre-trained
on ImageNet1K, i.e., SwinT. A significant distinction between
ViTs and SwinTs is the shifted windowing scheme utilized
in SwinTs, which limits self-attention computation to non-
overlapping local windows while allowing for cross-window
connection. As the SwinT stage deepens, the region influenced
by a patch increases, as shown in Fig. 7. SwinTs are considered
to combine the advantages of Transformers and CNNs, as they
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Fig. 7. One major distinction between SwinT and ViT architectures is that
SwinT builds hierarchical representations by merging image patches (left),
while ViT produces representations with the same resolution (right). The
illustration was inspired by [6].

TABLE I
QUANTITATIVE COMPARISONS OF INVERSION OF THE FIRST LAYER. OUR
PROPOSAL OUTPERFORMS OTHER APPROACHES IN ALL THREE METRICS.

Inversion Method PSNR ↑ FFT2D ↓ LPIPS ↓
w/o frequency domain 12.712 0.043 0.334
w/o regularizations 17.123 0.017 0.236
w/o attention matching 18.971 0.019 0.276
InvertRepr 13.326 0.039 0.368
GradInversion 13.537 0.041 0.328
GradViT 15.214 0.035 0.292
ours 20.054 0.015 0.196

incorporate a hierarchical construction approach commonly
used in CNNs. Our subsequent experiments also provide evi-
dence that SwinTs exhibit characteristics of both architectures.

For quantitative evaluations in Sec. V-A and Sec. V-D, to
obtain comprehensive results, we take a representative set of
three types of networks–ViT-S/16, ViT-S/32, ViT-B/16, ViT-
B/32, ViT-L/16, ResNet-34, ResNet-50, ResNet-101, ResNet-
152, SwinT-S, SwinT-B, and SwinT-L. In our experiments,
input image resolution is set at 224× 224 pixels.

The optimization algorithm is Adamax [45], and we decay
the learning rate exponentially according to loss change. For
inversion, we activate the regularization only in the first 3/4
epochs and then disable the regularization to eliminate possible
blurring.

A. Visualization Quality Evaluation

In this section, we conduct an ablation study of the proposed
techniques and compare our proposal with related studies.
We mainly focus on inversion visualization, which is gen-
erated based on the original image and therefore allows for
quantitative evaluation. The ablation study includes: inversion
generated in the spatial domain (w/o frequency domain); direct
optimization without image processing regularization (w/o
regularizations); reconstruction of sub-encoder representation
without attention matching (w/o attention matching). In addi-
tion, we compare our method with InvertRepr [8], GradIn-
version [21], and GradViT [22]. The fidelity regularization

in GradInversion and the image prior in GradViT are not
implemented in our experiments, because these regularization
methods require an additional CNN to obtain statistics of
normalization layers, which may introduce unknown errors
when only ViT information is desired. When reproducing the
methods being compared, we use the optimization strategy
employed in the original papers, because we find that Adamax
used in our proposal does not show superior performance in
spatial domain optimization. The visualization comparisons
(Fig. 8) in layer 1, 7, and 12 of ViT-B/16 show that our method
produces the clearest and artifact-free inversion results.

As a quantitative evaluation, we adopt three commonly-used
inversion quality metrics as in [22], i.e., peak signal-to-noise
ratio (PSNR), cosine similarity in the Fourier space (FFT2D),
and learned perceptual image patch similarity (LPIPS) [46],
to measure the similarity between inversions of the first layer
and the original images. We select these three image quality
metrics because they are capable of assessing the accuracy
of feature representations reflected by the inversion method.
Additionally, we choose to focus on the first layer as its
inversion can be viewed as a complete reconstruction of
the original images as discussed in [8]. The image quality
assessment of the first layer allows us to evaluate the inverting
performance of the inversion method, i.e., the ability to accu-
rately reconstruct representations. We randomly select 2000
images from the ImageNet1K validation dataset to generate
feature representations and inversions at the first layer of all
ViTs listed in Sec. V. Then, these three quality metrics are
applied to evaluate the similarity between these inversions and
the original images, as shown in Table I. The result shows
that frequency domain optimization can significantly improve
the inversion quality, and with our regularization and attention
matching, the quality outperforms the previous benchmarks by
a large margin.

Indeed, our method benefits from the inclusion of attention
matching, which provides an additional advantage compared to
previous methods that do not incorporate attention matching.
When comparing the PSNR results of our method with and
without attention matching, we observe an improvement of
1.083 on the metric. This indicates that attention matching
plays an important role in enhancing the quality of the
inversion results, leading to better image reconstructions with
higher fidelity and accuracy.

We have not included a comparison of maximization vi-
sualization results in our study, as we find that the results
optimized in the spatial domain tend to exhibit unordered and
unstable patterns. We have presented several examples of such
failure results in Fig. 9. Previous research has demonstrated
that MLPs correspond to kernels of fast frequency falloff and is
therefore difficult to produce high-frequency information in the
spatial domain [31]. Considering the similarity between ViTs
and MLPs, we speculate that ViTs may be more susceptible
to the frequency falloff property than CNNs and therefore
difficult to be processed in the spatial domain.

B. Feature Representation Reconstruction
In this section, we implement a comparison of feature

representation reconstruction between ViT-B/16, ResNet-50,
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Fig. 8. Qualitative comparisons of inversions generated in layers 1, 7, and 12 (from top to bottom) of ViT-B/16. Other ablations and competing methods
appear with artifacts or distortion of details. In contrast, our regularization method and attention matching demonstrate a significant impact on the sharpness of
the inversion results and the removal of patch noise, as observed in these results. Furthermore, frequency-domain optimization appears to implicitly improve
color consistency in the generated images.

Fig. 9. Channel visualization examples in the 7th layer of ViT-B/16. Top:
optimization results in the frequency domain. Bottom: optimization results in
the spatial domain. The results generated in the spatial domain show some
unordered and unstable patterns.

and SwinT-B, as shown in Fig. 10. More qualitative exper-
iments using other networks can be found in supplementary
materials. The visualization comparison demonstrates that the
consistency of representation reconstruction of the ViT is
stronger, especially in higher layers where the ViT can always
preserve most of the image details. On the other hand, the
image detail information in the CNN and SwinT is gradually
lost as the perceptual field increases in higher convolutional
layers.

Lower layers of CNNs are considered to possess general-
purpose feature extraction capability, i.e., basic image features
such as lines, colors, patterns, etc. Therefore, the low-layer
inversions have a lot of image details, e.g., the inversion
of conv1 almost reconstructs the original image. In contrast,
feature representations of higher layers of CNNs are con-
sidered to be class-discriminative. It is difficult to reproduce
the details given these object-related feature representations,
because a significant amount of low-level image features
have been discarded. For example, the inversion of res5b of
ResNet-50 shown in Fig. 10b looks like an abstract illusion
of the objects in the original image. For the ViT, we find

its inversions are very different from the ResNet. Even in
higher layers, ViT inversions still contain object details, which
indicates that the ViT feature propagation almost does not lose
image information. For SwinT, we find that its results exhibit
similarities with ResNet, e.g., starting from the 7th layer of
stage 3, SwinT inversion results also show a substantial loss
of image detail information.

We then apply the image similarity evaluation metrics (i.e.,
PSNR and LPIPS) to all layers of these three networks by
averaging the results generated using the selected 2000 images.
As shown in Fig. 11, the inversion results of the ViT’s
different layers are highly consistent with the original images.
While for ResNet-50, the ability to reconstruct original images
degrades obviously in higher layers. SwinT further strengthens
this tendency, and it is difficult to clearly reconstruct the
original image from the 4th layer of stage 3. We further
adopt a factorization-accelerated centered kernel alignment
(CKA) computation technique [47]–[49] to assess correlation
scores among layers as another supporting evidence for the
consistency of ViT representations. Similar correlation results
can also be found in previous related work [1]. As shown in
Fig. 12, correlation scores of feature representations between
lower and higher layers of ResNet-50 are much lower than
those of ViT-B/16. Notably, the results of SwinT in different
stages are similar to the results of ResNet in different residual
modules. These qualitative and quantitative results indicate
that the original ViT feature propagation can better preserve
image information.

C. Channel Feature Visualization
In this section, we generate channel representation maxi-

mization visualizations, and use attribution scores to detect
channels that are relevant to the targeted output, to create
a connection between maximization visualizations and the
particular output. The choice of positive or negative visual-
ization is determined by the sign of the sum of the channel
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(a) ViT-B/16 inversion visualizations

(b) ResNet-50 inversion visualizations

(c) SwinT-B inversion visualizations
Fig. 10. Inversion comparison among ViT-B/16, ResNet-50, and SwinT-B. The visualizations of ViT consistently exhibit a high degree of consistency and
effectively reconstruct a large number of image details even in the higher layers. This result suggests that ViTs are capable of capturing and maintaining
meaningful image features throughout the network layers. In contrast, both CNN and SwinT visualizations show noticeable variability as the layer index
increases, indicating that the feature representations in these architectures may undergo more significant changes with increasing depth. This observation
highlights the potential advantage of ViTs in preserving and leveraging meaningful image features across different network layers.
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Fig. 11. Layer-wise inversion quality comparison. The horizontal axis repre-
sents the layer index of the network, the vertical axis on the left corresponds
to the PSNR score, and the vertical axis on the right corresponds to the
LPIPS score. Lower LPIPS scores indicate better quality, while higher PSNR
scores indicate better quality. The results reveal that ViT inversions exhibit
higher consistency among all layers, while both CNN and SwinT show lower
consistency in high-layer inversion results.

representation, which makes no significant difference for the
discussion in this section.

The lower layers of a vision network are usually considered
to learn general-purpose features such as lines, contours,
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Fig. 12. CKA layer-wise similarities of ViT-B/16, ResNet-50, and SwinT-B.
Both axes represent the layer index of the network, with red indicating the high
similarity of feature representations and blue indicating low similarity. The
ViT architecture exhibits highly consistent representations across all layers,
while ResNet-50 shows noticeable differences in similarities between lower
and higher layers. The SwinT architecture shows similar results to CNN in
different stages (stages 1–4), but within the same stage, the SwinT results are
more similar to ViT.
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(a) ViT-B/16 channel visualizations (b) ResNet-50 channel visualizations (c) SwinT-B channel visualizations
Fig. 13. Representation maximization visualizations of the top three channels related to the “tiger cat” class. The heat maps are obtained by accumulating
the three attribution values along channels. These images are best viewed on screen.

Fig. 14. A simple flowchart of the experiment for evaluating the class-related property. If a channel consistently contributes to a specific class label, we
assign that class label to this channel. Then, if the network also recognizes this channel visualization, we consider the channel to be class-related.

textures, patterns, etc. While the higher layers are considered
to be activated by specific objects, e.g., the residual block5 of
ResNet-50 can learn features associated with a specific output
class. However, because of the consistency demonstrated by
the ViT inversion experiment, we suppose that the high-
layer channel features of ViT may be very different from
ResNet. As an example, we calculate attributions with the
“tiger cat” label using the original image in Fig. 4, and detect
the contributing channel features of ViT-B/16, ResNet-50, and
SwinT-B, respectively. Fig. 13 shows the visualizations of
the top three channels that contribute the most to the target
class in different layers. More channel feature visualization
results using other networks can be found in supplementary
materials. The heat maps are generated by summing these
attributions along the channel dimension. We can find that
the feature implications reflected by the ViT are still complex
patterns even in higher layers, e.g., the 11th layer’s results;
however, the implications of residual block5 of ResNet appear
to correspond to some objects such as cat’s eyes, claws, and
fur. Compared to ResNet, the high-layer features of ViT do not
show a clear object-related property. Although SwinT’s high-

layer results are expected to be similar to ResNet theoretically,
their results are highly abstract and may be challenging to
effectively observe from a single visualization image.

To comprehensively assess the non-object/class-related
property of ViT, we test whether the classification results
are associated with class labels by swapping the channel
visualizations of higher layers of ViT-B/16 and ResNet-50
and forwarding visualizations into each other’s networks. First,
we calculate attributions using 5000 randomly selected images
from the ImageNet1K validation dataset, and assign the sum
of the channel attribution values under a particular class to
this channel as its class point, thus assigning a fixed class
label for each channel based on its class points. For instance,
to attribute one channel in a hidden layer, we accumulate
the attribution scores obtained from all selected images under
their respective labels. Because the attribution scores are class-
targeted, we assign 1000-class points to this channel. Then,
the class label corresponding to the highest point is associated
with this channel. In other words, if a channel consistently
contributes to a specific class label, we assign that class label
to this channel. Subsequently, when the feature visualization
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Fig. 15. Examples of the texture-bias dataset include original, grayscale, silhouette, edge, style-transferred, occluded, and shuffled images.

TABLE II
PREDICTION RESULTS OF VIT-B/16, RESNET-50, AND SWINT-B USING FIG. 15.

Original Grayscale Silhouette Edge ST1 ST2 Occluded Shuffled
ViT-B/16 Top-1 Class tabby tabby hook envelope disk brake wood rabbit tabby tabby

True Label
Ranking 1 1 441 157 39 3 1 1

ResNet-50 Top-1 Class tabby tabby tabby envelope disk brake ice bear crossword puzzle quilt
True Label

Ranking 1 1 1 91 377 23 110 7

SwinT-B Top-1 Class tabby tabby tabby paper towel mask meerkat tabby tabby
True Label

Ranking 1 1 1 12 71 5 1 1
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Accuracies on Silhouette Images
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Fig. 16. Classification results for ViTs, ResNets, and SwinTs using five types of texture-bias data, i.e., silhouette, edge, style-transferred, occluded, and
shuffled images. The vertical axis represents different classes of images. The horizontal axis is the prediction accuracy of the networks. The triangular data
points represent the prediction accuracy for each image class, and the vertical line of the same color as the data points represents the average score. In cases
(a), (b), and (c), higher accuracy indicates that the network is less affected by texture bias, whereas in cases (d) and (e), higher accuracy indicates that the
network may exploit local texture information.

of this channel is forwarded into the network, we expect it to
activate the assigned class label. After confirming the class
labels, the channel visualizations of residual block 5a and
5b of ResNet-50 are forwarded to the ViT to compute the
probability that the visualization label is in the top-10 results.
A simple flowchart of the experimental process is shown in
Fig. 14. The result predicted by ViT-B/16 is 22%, which
indicates that the high-layer visualization of ResNet-50 does
correspond to some specific class labels. In contrast, we feed
the channel visualizations of layers 10 and 11 of ViT-B/16 into
the ResNet and find the prediction result is 1%, indicating that
channel features of the ViT are not associated with specific
class labels. This experiment demonstrates that ViTs may not
necessarily learn object/class-related features even in higher
layers, which are traditionally considered crucial for CNN-
based classification. However, this observation also suggests
that ViTs may possess stronger generalization capabilities,
as they are still able to achieve high classification accuracy
despite potentially not relying on explicit object/class-related
features in their high-level representations.

D. Texture Bias Evaluation

Geirhos et al. [50] designed a texture-bias dataset and
observed that CNNs pre-trained on ImageNet1K tend to make
decisions based on textures more than shapes. They have
160 images of objects with white backgrounds and generated
grayscale, silhouette, edge, and style transferred (ST) images
based on 160 original images to form the texture bias dataset.
In this section, we perform a similar experiment to evaluate the
texture bias of ViTs and SwinTs. In the texture-bias dataset,
the original and grayscale images can be accurately recognized
by all networks, thus we do not discuss them in particular. In
addition, we find that style transferred images generated using
VGG networks [51] may not be appropriate for assessing ViTs,
because experimental results show that CNN-based ResNets
are more easily fooled by these style-transferred images than
ViTs. Considering the permutation invariance of ViTs and
SwinTs, we further add two new types of texture-bias data,
i.e., randomly occluded and shuffled images. If a network
is able to recognize occluded or shuffled images, it is more
likely to be biased towards texture. Randomly occluded or
shuffled patch size in our experiment was randomly set under
the uniform distribution at 8, 16, or 32. For randomly occluded
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(a) (b)

(c) (d)
Fig. 17. Visualizations are generated using the image on the top left. Heat maps are generated using attribution values in the contributing channel which are
also determined by attribution scores. Maximization visualizations below correspond to these contributing channels. These images are best viewed on screen.

images, the percentage of the masked region was randomly set
in the range of 50%–70%. Some examples of the texture-bias
images are shown in Fig. 15. Prediction results using these
images (i.e., the texture-bias images in Fig. 15) are shown in
Table II, where “top-1 class” means the top-1 output label
and “true label ranking” refers to the ranking of the “tabby”
class (true label) in the prediction result. The original and
grayscale cat images are accurately recognized by ViT-B/16,
ResNet-50, and SwinT-B. The ResNet and SwinT recognize
the silhouette cat image, but the ViT incorrectly recognizes
it as a hook. For style-transferred images, the ViT performs
better than ResNet and SwinTs. Interestingly, both ViT and
SwinT are not disturbed by patch occlusion or permutation at
all and successfully predict the tabby cat.

In terms of experimental implementation, differently from
[50] where all images are evaluated together, we divide our
test images into several parts to evaluate biases under different
types of texture-bias data separately. In this experiment, all
ViTs, CNNs, and SwinTs are used to evaluate texture bias. The
classification results are shown in Fig. 16. We can find that
ViTs are more biased towards recognizing textures than CNNs
on edge and silhouette images. But SwinTs exhibits impressive
performance on silhouette and edge images, implying its
superior shape recognition ability. We also find that ViTs
and SwinTs appear to be less affected by random occlusion
or shuffle, indicating that they may more focus on the local

textures of the object.

To make our texture-bias experiment comprehensive, we
use the representation maximization visualization for further
validation, as shown in Fig. 17. The visualization layer of the
ViT is 11, while for ResNet it is res5b, and for SwinT it is layer
4-1. These heat maps are generated by resizing the attribution
values of the channel to the image size. The representation
maximization visualizations are selected according to channel
contributions to the output class. Fig. 17(a) and 17(b) show
two examples using original images in the texture-bias dataset.
The top left image in Fig. 17(c) is the silhouette image of
the original cat image above, and the visualizations show that
ResNet-50 can recognize the cat by its shape in the silhouette.
However, the top-1 classification result of the ViT is the
“hook” class, while the “tabby” class ranks 441st, indicating
that the ViT cannot recognize the cat’s shape. The visualization
results also correspond to the lines formed by the silhouette
of the cat and the background. This result is compatible
with the observation in [3] where they described that using
positional encoding results only in a 4% improvement in
ImageNet 5-shot performance. The visualizations generated
by SwinT are highly abstract and contain substantial target
feature information. However, the visualization images do
not clearly differentiate this information. For the Labrador
retriever image, as shown in Fig. 17(d), the ViT and the SwinT
can recognize the object even if all patches are randomly
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shuffled, indicating that they pay more attention to local
textures. Based on the experimental results, we hypothesize
that shuffle invariance could be a significant challenge in
generating visualizations with distinct object shapes in the
higher layers of Transformers. Addressing this issue could
be an intriguing direction for future research. On the other
hand, the shuffled image is classified as a mortarboard by
ResNet based on the black square in the middle region.
The maximization visualizations also show colors and shapes
very similar to those of a mortarboard. These experimental
results show that all these networks are biased towards texture
features, of which ViTs and SwinTs are more local-texture-
biased.

VI. CONCLUSION

There is an increasing interest in comparing ViTs and
CNNs to help researchers further understand these deep net-
works. In this work, we have utilized optimization visual-
ization to intuitively understand representations of ViTs. To
remove patch artifacts caused by the Transformer structure,
we have introduced frequency domain optimization and image
processing regularization into visualization generation. For
inversion visualization, we leveraged attention matching to
further improve visual quality. For maximization visualization,
we redefined the loss function according to the Transformer
structure and proposed to transform color space to alleviate the
problem of inter-channel correlations due to inverse Fourier
transform.

More important results emerged from visualization compar-
isons between these two types of networks. The comparison
of representation reconstructions shows that ViTs are able to
retain a large amount of image detail information up to very
deep layers, a property that has not been observed in CNNs.
We then used channel feature visualizations to demonstrate
that ViT high-layer features do not exhibit object/class correla-
tions as ResNets. Although the high-layer class discrimination
is commonly considered necessary for CNN classification,
ViTs achieve accurate classification with a different paradigm
that the high-layer features are still dominated by complex
patterns rather than class-discriminative features. Furthermore,
we conducted a texture bias experiment with the support of
visualizations and found that all tested networks are more
biased towards textures than shapes, of which ViTs prefer local
textures. We believe that optimization visualization can be a
useful tool in understanding and comparing deep networks,
particularly ones with different structures or mechanisms.

Our work still has some limitations that warrant further
exploration in future research. Firstly, given the plethora of
possibilities for indirect regularization, our proposal may not
be deemed optimal, and identifying further ways to improve
the regularization method remains a challenging task. Sec-
ondly, while our research has explored several applications of
inversion and representation maximization, we acknowledge
that there are numerous other potential applications for further
research in these fields, e.g., the exploration of the implicit
conflict between the general architectural capabilities of ViTs
and representation maximization. Both inversion and represen-
tation maximization hold significant promise for advancing our

understanding of network feature representations. We believe
that conducting further investigation into these methods can
yield valuable insights into the intricate workings of neural
networks. Finally, the impact of the data augmentation policy
on texture bias remains unknown. There are various data
augmentation techniques that could significantly influence net-
work performance, we believe that systematically investigating
and assessing their effects on texture bias would be a valuable
undertaking. Such research could help disentangle the impact
of network architectures and training approaches on texture
bias. As research in this area continues, we plan to delve
deeper into these questions.
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Supplementary Materials of  
Visualization Comparison of Vision Transformers 

and Convolutional Neural Networks 
 

I. MORE EXPERIMENTAL RESULTS 

A. Inversions using Different Images 

The images in Fig. S1 are downloaded from the URL: https://unsplash.com/, licensed under Creative Commons Attributions 
CC-BY 4.0. We report more inversion results on ViT-B/16 and ResNet-50 using these images, as shown in Fig. S2. The highly 
consistent ViT inversions indicate that even in high layers, the feature representation of the ViT may correspond to image details 
like textures and shapes. ResNet, on the other hand, discards most of the image information in high layers which may not be 
necessary for classification in ResNet. 

 

 
Fig. S1. Original images for generating visualizations. 

 

 

 
 

 

 
 

 
 



 

 

 
 

 
Fig. S2. Inversions generated with different images. Top row of each pair is generated using ViT-B/16; Bottom row of each pair 
is generated using ResNet-50. 
 

B. Inversions using Other Networks 

We report inversion experiments on ViT-S/16, ViT-L/16, and ResNet-152, as shown in Fig. S3. Both ViTs achieve highly 
consistent representation reconstructions of the input image. However, ResNet-152 has difficulty in achieving such clear recon-
struction in high layers. We also find that the optimization in the last few layers of the very deep ResNet-152 seems to be intractable 
and cannot steadily produce a recognizable result. 

 

 
(a) ViT-S/16. 

 

 
(b) ViT-L/16. 

 



 

 
(c) ResNet-152. 

Fig. S3. Inversions on different networks. 
 

We further report inversion experiments on ViT-B/16, ResNet-50, and SwinT-B pre-trained on ImageNet21K, as shown in Fig. 
S4. The ImageNet21K results are similar to their ImageNet1K counterpoints. For instance, ViT continues to exhibit consistent 
inversion results, whereas ResNet and SwinT progressively lose image details. 
 

 
(a) ViT-B/16-21K. 

 

 
(b) ResNet-50-21K. 

 

 
(c) SwinT-B-21K. 

Fig. S4. Inversions on the networks pre-trained on ImageNet21K. 
 

C. Maximization Visualizations using Other Networks 

We report maximization visualization experiments on ViT-S/16, ViT-L/16, and ResNet-152, as shown in Fig. S5. The high 
layers of ViTs seem similar to the residual block 4 of the ResNet. The visualizations of ViTs are not explicitly related to a specific 
object/class, but the visualizations of block 5 in ResNet show clearly cat-related details. 
 



 

(a) ViT-S/16. (b) ViT-L/16. (c) ResNet-152. 
Fig. S5. Representation maximization results of the top three channels related to the “tiger cat” class on different networks. 

These images are best viewed on screen. 
 

We also report maximization visualization experiments on ViT-B/16, ResNet-50, and SwinT-B pre-trained on ImageNet21K, 
as shown in Fig. S6. Compared with the networks pre-trained on ImageNet1K, the networks pre-trained on ImageNet21K seem to 
show more abstraction, which may imply stronger feature extraction ability. But we still cannot observe distinct shape semantics 
in ViT visualizations. 
 

(a) ViT-B/16-21K. (b) ResNet-50-21K. (c) SwinT-B-21K. 
Fig. S6. Representation maximization results of the top three channels related to the “tiger cat” class on the networks pre-trained 
on ImageNet21K. These images are best viewed on screen. 
 

D. Influence of Regularization Selections 

In addition to the indirect regularization methods we devised, commonly used direct regularization techniques, such as total 
variation and 𝛼-norm, lack the ability to maintain patch consistency. Another intuitive option, similar to morphological operations, 
is image smoothing filters like the mean filter. Compared to image smoothing, one advantage of morphological operations is that 



 

they offer better preservation of contours while blurring internal textures. In addition, their flexible structuring element selection 
may contribute to further extension. 

We also conducted experiments with classical regularization methods, such as a combination of total variation and 𝛼-norm, 
and with mean filter regularization (replacing morphological operations with mean filter). As shown in Fig. S7, the regularization 
methods we selected demonstrate slightly better visual performance. The quantitative results are shown in Table S-I. Both experi-
mental results show that our proposal outperforms the other variations. But we also believe that exploring improved filters or 
morphological approaches could yield further improvements in results. However, due to the possibility of regularization, deter-
mining the optimal combination of regularization methods remains challenging. Further exploration in this direction could be an 
interesting avenue for future research. 

 

 
Fig. S7. An effect of different regularization methods. 

 
Table S-I 

Quantitative comparisons of inversion generated with different regularization techniques. Our proposal outperforms other alterna-
tives in all three metrics. 

Regularization Selection PSNR ↑ FFT2D ↓ LPIPS ↓ 

mean filter 19.015 0.018 0.226 

classical reg. 18.731 0.019 0.235 

ours 20.054 0.015 0.196 

 

 
 


