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SwinGar: Spectrum-Inspired Neural Dynamic
Deformation for Free-Swinging Garments

Tianxing Li, Rui Shi, Qing Zhu, Takashi Kanai

Abstract—Our work presents a novel spectrum-inspired
learning-based approach for generating clothing deformations
with dynamic effects and personalized details. Existing methods
in the field of clothing animation are limited to either static
behavior or specific network models for individual garments,
which hinders their applicability in real-world scenarios where
diverse animated garments are required. Our proposed method
overcomes these limitations by providing a unified framework
that predicts dynamic behavior for different garments with
arbitrary topology and looseness, resulting in versatile and
realistic deformations. First, we observe that the problem of
bias towards low frequency always hampers supervised learning
and leads to overly smooth deformations. To address this issue,
we introduce a frequency-control strategy from a spectral per-
spective that enhances the generation of high-frequency details
of the deformation. In addition, to make the network highly
generalizable and able to learn various clothing deformations ef-
fectively, we propose a spectral descriptor to achieve a generalized
description of the global shape information. Building on the above
strategies, we develop a dynamic clothing deformation estimator
that integrates graph attention mechanisms with long short-term
memory. The estimator takes as input expressive features from
garments and human bodies, allowing it to automatically output
continuous deformations for diverse clothing types, independent
of mesh topology or vertex count. Finally, we present a neural
collision handling method to further enhance the realism of
garments. Our experimental results demonstrate the effectiveness
of our approach on a variety of free-swinging garments and its
superiority over state-of-the-art methods.

Index Terms—Clothing deformation, dynamics, spectral anal-
ysis, graph learning.

I. INTRODUCTION

V IRTUAL humans, which are digital characters designed
to resemble real humans, have been used in various

industries. Realistic clothing is crucial for the appearance of
virtual humans, making clothing animation an important topic
in computer graphics. Physics-based approaches [1], [2] apply
basic physics laws to animate cloth, but they require extensive
computation and are not practical for real-time applications.
Alternately, learning-based methods [3]–[5] have been pro-
posed to predict garment deformations close to simulation
results, making them promising solutions for interactive cloth
animation due to their efficiency.
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So far, several learning-based methods [6]–[10] have
demonstrated the ability to generate plausible garment de-
formations under static poses. However, these models only
consider isolated states in the current time, which results in a
lack of dynamics in the animation, particularly for loose-fitting
garments like dresses. More recently, researchers have also
explored solutions for dynamic deformations using GRU (Gate
Recurrent Unit) networks [11], [12], inertia loss terms [13],
[14], or operating on image space [15]–[17]. However, these
methods are restricted to specific garment objects and require
individual training for each garment, which limits scalability.
The most recent work [18] addresses this with hierarchical
graphs, but its efficiency is curtailed due to the difficulty in
parallel processing of sequences, preventing optimal utilization
of GPU hardwares.

Undoubtedly, creating a unified learning-based model to ap-
proximate the behavior of animated garments is a difficult task
due to the variety of clothing types, dynamic deformations, and
nonlinear details involved. Neural networks with a carefully-
designed architecture hold promise for this task, but they often
display a bias towards low-frequency information, which has
been criticized in other studies [4], [6], [13]. Employing a
narrow-bandwidth kernel to preserve the fine-scale details like
in [6] provides a spectral solution but cannot fully address
the inherent bias, especially in complicated scenarios with a
variety of garment shapes. On the other hand, the common
practice of directly using spatial position to represent clothing
also poses a challenge for the task. This representation is
highly sensitive and not generalizable, leading to overfitting
and poor generalization performance of the model. Therefore,
exploring solutions to these challenges is crucial.

We present a learning-based method for predicting the
deformation of free-swinging garments (Fig. 1). Our approach
is centered on a general estimator based on graph attention
mechanism and long short-term memory, capable of handling
garments with arbitrary topologies. The key to accomplishing
such a complex task lies in the introduction of spectral
analysis techniques, which facilitate effective control over the
learning of low- and high-frequency garment deformations
and the generation of discriminative global shape represen-
tations for diverse garments. With our designed estimator,
high-quality predictions of dynamic deformations for unseen
garments can be achieved without additional training. Besides
the estimator for dynamic deformation, we propose a novel
collision handling method. This technique not only further
removes the residual garment-body penetration in deformation
estimation using collision loss alone [4], [7], [8], but it also
overcomes the barrier of requiring to learn multiple models
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Fig. 1: We propose a learning-based method to automatically generate dynamic deformations across a variety of garments within
a unified framework. By incorporating spectral strategies, our method achieves realistic generation of high-quality details while
also exhibiting good generalization capabilities.

for scenarios involving different garments [19]. Crucially, our
method takes into account the fidelity of clothing details when
eliminating collisions, thereby improving the overall realism
of the clothing animation. In summary, our main contributions
include:
• A frequency control strategy for deformation learning.

To the best of our knowledge, we are the first to identify
a relationship between the Fourier spectrum of the hidden
layers and the learning of garment deformations. By inte-
grating Lipschitz normalization into the graph attention-
based network, we address the intrinsic spectral bias,
resulting in an improvement in the quality of garment
deformation.

• A spectral global clothing descriptor. Considering the
diverse range of customized garments in practice, we
propose a spectral descriptor that provides robust and dis-
criminative representation for various types of garments,
allowing the model to effectively learn the personalized
deformations relevant to garments.

• A general dynamic clothing estimator. We present a
novel estimator that leverages the combination of graph
attention mechanism with long short-term memory, en-
abling the generation of dynamic deformations for unseen
garments without the need for repeated training.

• A neural collision-handling method. We propose a
collision handling method based on neural distance fields,
designed to handle scenarios involving multiple garments
with a unified model. By introducing corrective dis-
placements that consider local mesh consistency, we can
remove collisions while maintaining the natural details of
the garments and preventing bulge artifacts.

Our proposed method has been validated through extensive
experiments, demonstrating its advantages over state-of-the-art
methods. The results highlight the potential of our approach
to advance the field and facilitate practical applications, where
the detailed insight into the ideas of learning-based defor-
mation and spectral analysis can contribute to more future
research.

II. RELATED WORK

Physics-based simulations [20]–[24] take into account the
physical properties of clothing, allowing for a high degree

of realism in deformation effects. The algorithm starts by
constructing a model based on the physical properties and
dynamics of the garment, and then numerically solves the
model equations to obtain the deformed mesh state at each
time step. Researchers have developed methods [1], [25] to
simulate hyperrealistic clothing, but the computational cost
required for accurate results is enormous. Hence, studies have
looked at ways to improve the efficiency and stability of gar-
ment simulation, including adding detailed wrinkles on low-
frequency meshes [26], [27], utilizing parallel computation
solutions with GPUs [28], [29], and trading some accuracy
for performance in the approximation [30]. On the other
hand, physics-based simulations also face the challenge of
setting simulation parameters. Typically, each change of cloth
properties or resetting of the mesh structure requires manual
fine-tuning of parameters, which requires a certain level of
expertise and significant time cost. Despite the emergence of
research [31] on the automatic acquisition of simulation pa-
rameters, there is still a need for computationally inexpensive
and easier-to-set-up deformation methods if diverse garments
are to be applied to digital scenes.

Learning-based methods [19], [32]–[38] have gained pop-
ularity as an alternative to physics-based simulations. These
methods use models for estimation and directly output the
desired garment deformation.

For complicated garments of game characters, NeuroSkin-
ning [39] explored how to apply graph neural networks to
3D mesh deformation and proposed a skinning weight ap-
proximation method that can be applied to arbitrary topolog-
ical structures of meshes. Subsequently, graph learning-based
approaches [40]–[43] for automatic generation of skinning
weights and blend shapes have been proposed. Although the
above methods provide deformation approximation models
with good generalization ability and efficiency, they are still
limited to producing folds and wrinkles of garments with vivid
visual expression. To this end, researchers have focused on
garment deformation that generates rich details for dressing the
parametric human body SMPL [44]. TailorNet [6] decomposes
deformations under static pose into low- and high-frequency
components, and then utilizes multiple multi-layer perceptrons
(MLP) for deformation approximation, which can generate
wrinkles for garment meshes with the fixed topology and
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number of vertices. To improve the generalization ability of
deformation models, researchers use PointNet-based network
[3], [4] and fully convolutional graph neural networks [5]
to model deformations for various garments with different
numbers of vertices. Similarly, using the graph mesh-based
network, N-Cloth [45] can predict plausible garment defor-
mation for arbitrary triangle meshes, while not being limited
to SMPL bodies. One recent technique, DeePSD [7], also
employs GCN. However, the weights and blend shapes it
generates rely solely on the initial state of the garment, without
accounting for the effects of animation.

Researchers have also made efforts to eliminate the depen-
dency on huge volumes of ground truth data, by proposing
a neural simulator trained by unsupervised learning [8]. In
addition, there are studies that follow an unsupervised scheme
and introduce the inertia loss term, inspired by physics-based
simulation, to achieve dynamic clothing effects [13], [14].
For loose-fitting garments, recent work [11] generates virtual
bones for dresses and infers the dynamic deformation of
garments from motion sequences. However, they are diffi-
cult to generate different dynamic garments using a single
deformation approximation model. More recently, HOOD [18]
introduces a hierarchical-graph-based network that enables
diverse garment deformation prediction. However, due to the
complex design involving multiple sources of features such
as vertices, edges, and garment-body relationship, achieving
parallel processing of motion sequences remains a challenge
with their proposal.

Another line of research focuses on clothing deformation
in image space. To create realistic clothing deformation from
scan data, DeepWrinkles [46] employs two complementary
modules: one models the global shape using a linear subspace
model, while the other enhances high-frequency details in
normal maps via a generative adversarial network. Additional
research [15] builds on this detail enhancement, framing it as a
style transfer task. Though these methods yield photorealistic
results, they may inaccurately capture some 3D shape details
in certain areas and can be sensitive to lighting or viewpoint.

III. METHODOLOGY

At the core of our work is a learning-based approach that
takes a body in motion and a garment in its initial state
as inputs, and outputs a garment deformation with dynamic
effects and individualized details. More specifically, given an
arbitrary 3D garment mesh in the initial state M0, a set of
SMPL [44] bodies with shape parameters β and continuous
poses (θt−m, ..., θt) from the previous state t − m to the
current state t, our goal is to predict the deformed garment
mesh with dynamic effects based on the state of the body and
the properties of the clothing itself. Formally, we define our
dynamic deformation estimator W as:

M t =W(M0, β, (θt−m, ..., θt)). (1)

Fig. 2 illustrates the complete process of clothing deforma-
tions. While the learning process of M t is end-to-end, the
deformation generation can be split into two stages. Firstly, we
generate the global coarse deformation M t

c by approximating

dynamic weights and unposed blend shapes. Secondly, we
generate M t by further predicting the corrective blend shapes
based on M t

c . This two-stage strategy can effectively reduce
the complexity of learning the nonlinear deformation task, as
evidenced by prior studies [5], [6], [9], [12].

Given the aforementioned tasks, intuitively, it is crucial
to accurately obtain and process various feature types. In
the following sections, we start by introducing a frequency
control strategy in feature processing of garment mesh graphs
to enhance the quality of the high-frequency detail part (Sec.
III-A). Next, to provide networks with valuable information to
effectively distinguish between diverse garments, we propose
a compact global descriptor based on the concept of spectrum,
offering a comprehensive characterization of the garment
shape (Sec. III-B). Then, we detail the dynamic deformation
estimator, illustrating the information flow for the two-stage
process (Sec. III-C). Lastly, we present a collision-handling
method based on the neural signed distance field to further
ensure the realism of the predicted garment (Sec. III-D).

A. Frequency Control Strategy

Due to the wide range of garments with varying topologies
and vertex counts, it is essential for our network to be capable
of handling these diverse inputs. To address this challenge, we
adopt graph attention network (GAT) [47] and perform feature
extraction using graph attention layers on arbitrary garment
meshes. Let V = [v1, ...,vN ] ∈ Rd×N denote the graph
features, where d is the dimension of features for each vertex,
and N is the number of vertices. The process of handling
features in graph attention layer fAtt can be formulated as:

fAtt(V ) = V softmax(g(V ))>, (2)

where g(V ) : Rd×N → RN×N denotes a linear transformation
used to calculate attention scores. Here, we execute the masked
attention by calculating scores for nodes along with their
neighborhood in the graph as in [47]. The softmax function
is employed as a normalization operation.

Graph attention-based networks have emerged as state-
of-the-art methods in a wide range of 3D data processing
applications. However, as previously argued, we have observed
that these networks, along with other general graph networks,
face challenges in learning deformations due to spectral biases.
To address this issue, we aim to enhance the network’s ability
to learn high-frequency components by adjusting its spectrum
(Fig. 3). It has been demonstrated in image detail enhancement
tasks that finding an upper bound on the Fourier coefficients of
the learning layer can effectively control the Fourier spectrum
of a convolutional network, yielding favorable results [48].
Inspired by this, the derived problem in this study becomes
how to find the upper bound on the Fourier coefficients for the
graph attention layer. To this end, according to the theory of
harmonic analysis [49], we can enforce fAtt to be Lipschitz
continuous such that its Fourier coefficients are constrained.
Specifically, if fAtt is Lipschitz continuous, there exists a
constant L satisfies ‖fAtt(Vu)− fAtt(Vw)‖F ≤ L‖Vu−Vw‖F
for any input of Vu, Vw ∈ Rd×N , where ‖ · ‖F represents
the Frobenius norm of the matrix. The minimum of such
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Fig. 2: Overview of our neural dynamic deformation method. The deformation estimation can be divided into two stages
involving three processing units: garment information, body information, and dynamic garment processing. In the first stage,
garment graph encoder and garment shape encoder extract the initial graph and global shape features of the garment mesh,
respectively. Simultaneously, motion encoder and body encoder process body motion, shape, and pose features. The high-level
graph features and motion features are utilized by the garment state encoder to generate garment state features, which combined
with the garment global features, are used to predict dynamic weights and unposed blend shapes through the predictor, resulting
in coarse-level garment deformation. In the second stage, subsequent graphs (M t−2

c ,M t−1
c ,M t

c) are processed by a corrective
blend shape predictor and fused with body attributes to yield dynamic garment deformation. Finally, a neural collision handling
method refines the predicted garments to produce the final garment deformation results.

Fig. 3: Step-by-step procedure for addressing the spectral
bias issue in graph attention layers from a Fourier spectrum
perspective.

constant values is called the Lipschitz constant, denoted as
LF (fAtt). Consequently, the k-th Fourier coefficient f̂Att(k)
of the attention layer is bounded by:

|f̂Att(k)| ≤ LF (fAtt)

k2
. (3)

Here, without any control of the attention layer, its Lipschitz
constant LF (fAtt) is uncertain, which leads to no upper bound
on the Fourier coefficient in Eq. (3). At this point, a further
derived problem arises: determining the appropriate upper
bound for the Lipschitz constant LF (fAtt).

In the work by [50], the authors innovatively propose
bounding LF (fAtt) through the introduction of a normalized

attention score function, and they provide a comprehensive
derivation of this process. This pioneering work has been
a direct influence on our approach. Our contribution lies in
the adaptation of this method to a new domain - clothing
deformation. Specifically, we normalize the score function
g(·), defining it as g∗:

g∗(V ) =
αg(V )

max
{
‖g(V )‖(2,∞), ‖V >‖(∞,2)LF,(2,∞)(g)

} , (4)

where α ≥ 0 is the scale controller of scores; ‖ · ‖(2,∞) and
‖ · ‖(∞,2) respectively denote (2,∞)-norm and (∞, 2)-norm
for the matrix; LF,(2,∞)(g) stands for the spectral norm of the
parameters of g. The proof of Eq. (4) is detailed in [50]. With
the designed normalization, LF (fAtt) is Lipschitz continuous,
and Eq. (3) can be expressed as:

|f̂Att(k)| ≤ πLF (fAtt)

k
≤
eα
√
b/N + α

√
8

k2
. (5)

As a result, the attention layer fAtt with g∗ is Lipschitz contin-
uous, and its Fourier coefficient f̂Att(k) can be upper-bounded.
This allows us to have control over the network’s ability to
learn high-frequency information through the parameter α. We
also refer to the graph attention layer that has the Lipschitz-
normalized score function g∗ described above as the GAT-LN
layer fAttLN.

B. Clothing Spectral Descriptor

Existing dynamic garment deformation models [11], [13]
are mostly limited to the specific garment, while static garment
deformation models that use graph neural networks [7], [45]
attempt to learn across multiple garment types but often rely
only on vertex positions, which overlooks important global
information and leads to inaccurate predictions. Research
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Fig. 4: Color plots of the first six approximated eigenvectors
of the long-sleeved dress mesh, where vertices in red represent
high values distributed in areas such as the sleeves, shoulders,
waist, and neckline. This suggests that the spectral description
can reveal meaningful global information of the mesh shape.

has demonstrated that spectral shape analysis is effective in
capturing mesh information [51]. In this work, we investigate
the use of spectral descriptors to reveal meaningful global
information about garments with varying shapes.

Given a garment mesh with N vertices, we construct an
affinity matrix A ∈ RN×N , where the i, j-th entry of A is the
affinity between the i-th and the j-th vertices. Specifically, we
use the geodesic distance calculated by Dijkstra’s algorithm to
define the affinity between two vertices. The defined affinity
matrix has the advantage of incorporating intrinsic shape
properties and being invariant to bending and rigid transfor-
mations, allowing for the effective learning of diverse garment
deformations. Next, we perform spectral decomposition on the
affinity matrix A. The eigenvectors of the affinity matrix form
the normalized representation of the garment shape, while the
eigenvalues specify how the shape varies along the axes. This
allows us to consider the eigenvalues as the spectral descriptor.

In practice, garments often have thousands or tens of thou-
sands of vertices, which can make the process of constructing
and decomposing affinity matrices computationally expensive.
To expedite this process, we apply Nyström approximation
method [52] to efficiently approximate the eigenvalues of the
original affinity matrix A. In particular, we perform furthest
point sampling, a technique where we start by randomly
selecting a vertex and then iteratively sample from the re-
maining vertices that are farthest from the set of already-
sampled vertices until z vertices are selected (z � N ).
For these sampled vertices, we then calculate the affinity
matrix B ∈ Rz×z . This smaller affinity matrix can be easily
spectral-decomposed B = UΛU>, allowing us to obtain an
approximation of the eigenvectors Q̂ of the original affinity
matrix by using the Nyström method. Then, the corresponding
affinity matrix can be approximated as Â = Q̂ΛQ̂>. Finally,
we combine the eigenvalues into a vector λ = [λ1, λ2, . . . , λz],
which we refer to as our clothing spectral descriptor. Note that
the length z of the designed spectral descriptor is determined
by the number of samples selected from the original garment
shape and remains fixed. In contrast to the direct representation
of clothing shapes by vertex coordinates, the proposed spectral
descriptor offers a more compact and global representation
of the garment shape. This enables the model to efficiently
learn multiple types of garment deformations. To demonstrate
a clearer visualization of the global information description,
we show a color plot of the approximated eigenvectors Q̂
(instead of the eigenvalues, which are difficult to represent

visually) in Fig. 4.

C. Dynamic Clothing Deformation Estimator

Due to the multi-source nature of the deformation-related
information, the estimator is divided into several units respon-
sible for processing garment information, body information,
and dynamic garment.

Garment information processing. We first construct a
mesh graph for initial garment M0 = (V 0, E), where V 0 rep-
resents the vertex features and E denotes the mesh edges. For
each vertex, we define its features as: vi = [ni, xi, ai]

>, which
includes vertex normal ni ∈ R3, position xi ∈ R3, and the
garment-body fit attribute ai ∈ R1 [9]. These features capture
important characteristics of the garment and describe the fit to
the target body. To extract abstract garment information, we
then pass this mesh graph through a garment graph encoder Eg
to extract high-dimensional local graph features. On the other
hand, we use spectral global description to analyze the garment
as a whole, using the descriptor λ. This descriptor is then fed
into a garment shape encoder Ea to extract the comprehensive
shape information. Notably, the information for each garment
is processed just once at the rest pose.

Body information processing. The garment deformation is
also closely influenced by body state. Therefore, we adopt
a motion encoder Em composed of LSTM to sequentially
process the motion poses from time t−m to t (θt−m, ..., θt),
where θ denotes the concatenation of axis-angle of each joint
and the translation of the body relative to the preceding frame.
In practice, we set m to 64 to include the relative overall
motion information. Additionally, we apply a body encoder
Eb to project the body shape β and current pose θt to the
latent space, resulting in the latent body representation.

Dynamic garment processing. In the context of garment
dynamic deformation, the state of the garment is influenced
by both its inherent properties and the characteristics of the
motion with which it interacts. To encode the dynamic garment
state, we perform an element-wise multiplication between the
processed graph features from the garment graph encoder Eg
and the processed motion features from the motion encoder
Em, and feed the product into the garment state encoder
Es to extract garment state features. Next, loose garments
such as dresses require skinning weights that are strongly
correlated with both the clothing shape and the motion. To
achieve this, we use a dynamic weight predictor Pc. This
predictor performs multiplication between the garment shape
features and state information, after which the results are
normalized via softmax, thus generating garment and motion-
related skinning weights W t. The predictor also contains an
unposed blend shape prediction part, which further processes
the garment state features through GAT-LN layers and com-
bines them with the motion feature to generate the unposed
blend shape Bt. Subsequently, using the resulting skinning
weights and unposed blend shapes, we apply linear blend
skinning to generate the intermediate deformation M t

c . Note
that while the body translation information is included in
the body information processing, it has not been applied to
the skinning step yet. The obtained M t

c is order-dependent
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Fig. 5: Illustration of the inside of LSTM-GAT-LN. Sequences
of graphs are transformed using the LSTM, while the state-
to-state and input-to-state transformations follow the attention
mechanism.

that incorporates underlying dynamics resulting from dynamic
weights and unposed blend shapes.

To enhance the detailed folds of garments and ensure
continuity, it is essential to process the time-series garment
mesh data further. To do so, we construct a mesh graph
M t
c = (V t, E), where each vertex feature includes the current

position of the vertex and its distance from all body skeletal
joints. To process time-series graph data in a detail-aware
manner, we design LSTM-GAT-LN as basis to construct
corrective blend shape predictor Pd. Specifically, LSTM-GAT-
LN is employed to map a series of graphs into corrective
blend shape. For efficiency, we use three consecutive graphs
(M t−2

c ,M t−1
c ,M t

c). The LSTM-GAT-LN is defined as:

it = σ
(
fAttLN(M t

c) + fAttLN(Ht−1) + wiCt−1
)
,

f t = σ
(
fAttLN(M t

c) + fAttLN(Ht−1) + wfCt−1
)
,

ot = σ
(
fAttLN(M t

c) + fAttLN(Ht−1) + woCt−1
)
,

Ct = it ◦ tanh
(
(fAttLN(M t

c) + fAttLN(Ht−1)
)

+ f t ◦ Ct−1,
Ht = ot ◦ tanh

(
Ct
)
,

(6)
where it, f t, ot denote the input, forget, and output gate
respectively; Ct,Ht indicate the cell state and hidden state;
wi, wf , wo are the weights of the cell state; σ is the sigmoid
function, and ◦ means the Hadamard product. The structure
of LSTM-GAT-LN is shown in Fig. 5. It considers both
the spatial correlation between structural graph nodes and
the temporal correlation between sequential graphs, enabling
efficient learning of high-level representations from complex
clothing graph data. Next, to make the dynamic details fully
reflect the attributes of the garment and the body, the processed
graph after the LSTM-GAT-LN is multiplied with the latent
body features from the body encoder Eb and forward into
a two-layer GAT-LNs to generate the final detail correction.
This correction is at the vertex level and will be added to the
intermediate garment M t

c . Finally, we also apply body trans-
lation to the result, thereby obtaining the dynamic garment
deformation M t.

To train the dynamic clothing deformation estimator, besides
the position loss, we also employ consistency, gravity and
collision loss terms [8] to help learn garment deformations
close to the ground truth, while ensuring continuity and
collision-free.

D. Collision Handling

With the dynamic garment deformation estimator, we are
able to achieve realistic garment deformation effects that

include continuous, detailed folds. However, we observed that
collisions still occur in the predicted results. Despite the col-
lision loss term provides some soft constraints on penetration
between the garment-body pair during model optimization,
it may not be effective in handling collisions for unseen
data during inference. To address this issue, we propose a
neural collision-handling method that can accurately detect
and appropriately respond to garment collisions, correcting the
garments to be collision-free while preserving realistic details.

Neural fields are capable of representing the physical prop-
erties of the object across space, and have been successfully
applied in several 3D tasks [36], [53]. For the potential
collision between our dynamic garments and bodies, we use
the signed distance field (SDF) of the body to represent the
penetration between the body and the garment:

s(xi) = sgn(xi,Mb)d(xi,Mb), (7)

where d(xi,Mb) ∈ R is the unsigned nearest distance from
garment vertex xi to body mesh Mb, and sgn(·) is a sign
function indicating whether the xi is inside (positive) or
outside (negative) of the body.

The function of Eq. (7) is non-analytic, and the computation
for each vertex can be time-consuming. Therefore, we propose
employing a neural model S to approximate the SDF for
fast collision detection. Neural models have previously been
employed with success in the reconstruction of 3D rigid [54]
and articulated objects [55]. Building on this foundation, our
approach repurposes a similar architecture to cater specifically
to SMPL human body models, enabling the detection of
collisions and facilitating the process of collision removal. Our
model S comprises multiple fully-connected layers to process
clothing vertices, along with an additional branch of fully-
connected layers for handling body shape and pose features.
To facilitate effective parameter optimization, we design a loss
function that guides the learning process:

LSDF =
1

N

N∑
i=1

(‖S(xi)− s(xi)‖+ ‖∇xS(xi)− ni‖) + µeLE,

(8)

LE =
1

N

N∑
i=1

(‖∇xS(xi)‖ − 1)2, (9)

where ‖ · ‖ is the L2 norm. The loss function encourages the
prediction S(xi) to be similar to the ground truth value s(xi)
and its gradients ‖∇xS(xi)‖ to be similar to the normal ni.
Also, we use an Eikonal term [56] LE that constrains the
predicted gradient value ‖∇xS(xi)‖ to be close to 1. µe is
the balancing weight and set as 0.15.

Once a garment vertex collision has been quickly detected
by the model, we need to make reasonable adjustments to
the position of the collision vertex. For the collision vertex
xi with a positive value of S(xi), the corrective displacement
∆(xi) ∈ R3 is defined as:

∆(xi) =
∇xi
S(xi)

‖∇xiS(xi)‖
(|S(xi)|+ δi) , (10)

where ∇xiS(xi) is normalized as the direction of displace-
ment, and the magnitude is calculated as the sum of two
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terms. The first term of the magnitude is the SDF value
|S(xi)| (i.e.the collision vertex xi is moved just to the body
boundary) and the second term δi is a further detail correction
based on the state of the non-collision neighboring vertices
Ni. Specifically, δi =

∑
k∈Ni

wk|S(xk)|/|Ni| indicates the
weighted average of the absolute SDF value |S(xk)| of the
adjacent vertex xk ∈ Ni, where the weight wk is determined
by the Gaussian function applied to the distance between
xi and xk, which is then normalized. Here, δi serves two
purposes: first, it allows for partial avoidance of edge-to-edge
collisions that may occur if only the vertices were moved to
the surface of the body using the magnitude of |S(xi)|; second,
it helps maintain local consistency near the corrected vertex,
preventing excessive bulges.

IV. IMPLEMENTATION DETAILS

Architecture. As described in Fig. 2, our dynamic defor-
mation estimatorW comprises three processing units: garment
information processing, body information processing, and dy-
namic garment processing.

The garment information processing unit consists of a gar-
ment graph encoder Eg and a shape encoder Ea. Specifically,
Eg has two GAT-LN layers, with hidden feature sizes of
[64, 128] and multi-head numbers of [24, 24]. The frequency
control parameter α is set to 2, which is consistent across all
subsequent GAT-LN layers. The garment graph features are
generated by Eg . The shape encoder Ea, used for handling the
spectral descriptor λ = [λ1, ..., λ256], and comprises three fully
connected layers of sizes [256, 128, 24]. The garment shape
features are generated by Ea. In our complete estimator W ,
all fAttLN layers utilize tanh, and all fully-connected layers
employ ReLU as the activation function.

The body information processing unit is composed of a
motion encoder Em and a body encoder Eb. Specifically, Em
incorporates a standard LSTM and outputs the motion feature
with a size of 128. The body encoder Eb, designed to handle
body shape and current pose features, is structured with three
fully-connected layers, possessing hidden sizes of [256, 128,
64].

The dynamic garment processing unit comprises a garment
state encoder Es, a dynamic weight and blend shape predictor
Pc, and a corrective blend shape predictor Pd. Firstly, the
garment state encoder Es has a fAttLN layer with a hidden
feature size of 128 and 24 multi-heads. The garment graph
features and motion features are element-wisely multiplied
before being fed into Es. Secondly, the dynamic weight
and blend shape predictor Pc has two parts: 1) a dynamic
weight predictor and 2) an unposed blend shape predictor.
The dynamic weight predictor multiplies the garment state
features with garment shape features, compresses the feature
channel, and normalizes the result using the softmax function.
The unposed blend shape predictor processes the garment state
features through two fAttLN layers with hidden feature sizes
of [256, 128] and three heads, and then multiplies the result
with the motion features to generate the unposed blend shape.
After that, we utilize the linear blend skinning, which deform
the garment according to the skeleton rotation, yielding the

intermediate garment M t
c . Lastly, a corrective blend shape

predictor Pd is used to handle the temporal graphs. Pd consists
of an LSTM-GAT-LN with hidden feature size of 64 and 8
heads, along with two single-head fAttLN layers with hidden
feature sizes of [64, 3]. The body features generated by
Eb are multiplied with the outputs of the LSTM-GAT-LN.
Following this, the multiplication result is forwarded into the
two fAttLN layers to generate the corrective displacements.
These displacements are added to M t

c , and translations are
applied, resulting in the generation of dynamic detail garment
M t.

Additionally, we introduce a collision handling model S
for post-processing. This model is designed with eight fully-
connected layers (512 hidden feature sizes), split into two
branches: three layers for garment vertex position, three for
body shape and pose features, and two for feature fusion. Each
branch incorporates a residual connection that links the output
of the first layer to the layer preceding the fusion. For the
activation function, we utilize the Softplus activation function
with an internal parameter set to 100. During the training, the
body translations are temporarily removed prior to collision
handling and subsequently reintroduced to generate the final
deformation.

Dataset. We obtained loose garments, including long t-
shirts, dresses of varying lengths and sleeve styles, and jump-
suits, from the public CLOTH3D dataset [57], and draped
them over SMPL bodies. To animate these characters wearing
various garments, we collected motion sequences (e.g., danc-
ing, running, throwing, strutting, etc.) from the CMU Mocap
dataset [58] at a frame rate of 30. For ease in training, the
initial position of these characters is set to the origin. Then
we utilized the Blender’s cloth physics with the silk fabric to
create the ground truth data. The training set consists of about
50 garments, nine bodies, and a total of 50,000 poses (roughly
250 motions). The test set includes 15 different garments,
each draped over a body with a randomly selected shape, and
collectively yielding a total of 7,500 poses (about 30 motions)
across all garments. Importantly, there is no overlap between
the training and test sets.

Training losses. To train the dynamic clothing deformation
estimator, in addition to the mean squared error loss function
of the vertex position, we also draw inspiration from other
learning-based models like [8], and utilize the following loss
functions for optimization:

Lvert = kv
1

N

N∑
i

‖Xi −XGT
i ‖2, (11)

Lconsistency = ke‖E − EGT‖2 + kb∆(N)2, (12)
Lgravity = −kgMXg, (13)

Lcollision = kc‖min (h(X)− ε, 0) ‖2, (14)

where Lvert is the vert position loss and XGT ∈ RN×3
stands for the ground truth vertex positions; Lconsistency is
the consistency loss and consists of two terms: an edge term
a bending term, where E ∈ RNE (NE : the number of edges)
is the predicted edge lengths, EGT is the edge lengths of the
ground truth, and ∆ represents the Laplace-Beltrami operator

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3346055

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Tokyo. Downloaded on December 29,2023 at 05:47:42 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 8, AUGUST 2021 8

Fig. 6: Example of a forward and backward motion sequence
of dressing swinging. Our method can successfully generate
dynamic effects.

applied to the face normal N ∈ RNF×3 (NF : the number of
faces). Lgravity is the gravity loss, M is the vertices mass, and
g = (0, 0,−9.8) is the gravitational acceleration. Lcollision is
the collision loss, where h(X) is the signed distance from
the garment vertex to the nearest body vertex, and ε refers
to the small positive value to prevent interpenetration. The
hyperparameters of balancing weights are set as kv = 50,
ke = 10, kb = 3, kg = 0.2, kc = 1.5 for the optimization
process.

Training implementation. We trained our dynamic defor-
mation estimator W using two nVIDIA RTX A6000 GPUs
with a batch size of 64. To optimize the training process, we
used the Adam optimizer with an initial learning rate of 1e-3
and applied cosine annealing to decay the learning rate. We
initialized the GAT-LN layers using the Glorot initialization
and LSTM and fully connected layers using the Kaiming
initialization [59]. Both of initializations are performed with
their default settings. We made these choices based on their
proven effectiveness in improving training convergence and
performance. We first use only supervised loss for training,
and switch to include all losses when the reduction in vertex
distance error is less than 2% within 50 epochs. Our model
was trained for roughly 5000 epochs and took around 5 days.
To train our collision handling model, we randomly selected
vertices from different bodies and clothes, and sampled the
interior points of the body. The collision model weights are
initialized with a geometric initialization from [60]. The setting
of training of this model is [56].

V. EXPERIMENTS

A. Results and Evaluation

Dynamic effect. In Fig. 6, given the dressing and swinging
motions from the test set, our approach is capable of predicting
the unseen garment’s dynamic effect. The trend of body
movement can be clearly observed by examining the positions
of the head and arms. In the top row, the body undergoes a
swing from a forward-leaning state to a slightly curved state,
resulting in the front hemline of the garment transitioning from
a hanging state to a position close to the calf. In contrast,

Fig. 7: Qualitative results of our method for various garments
and motions.

in the bottom row, the body motion is from back to front,
causing the back side of the dress to gradually lift up with the
movement. Despite the same pose, our dynamic deformation
estimator successfully predicts the distinct garment dynamics
based on the previous states. More intuitive dynamic results
are available in the supplemental video.

Realism. Our approach is characterized by a unified frame-
work that enables dynamic deformation of diverse unseen
garments. In Fig. 7, we evaluate the proposed method using
three test garments. To demonstrate the method’s general-
ization ability, we list the top three training data with the
highest similarity to the corresponding test data on the right
side of the figure. This similarity is calculated by computing
the Frobenius norm of the affinity matrices between the
test garment and all training garments in pairs. Notably, the
training data and test data obviously differ in aspects like
sleeve shapes, hemline lengths, trouser leg styles, and levels of
looseness. Even when encountering new garments, the overall
deformation predicted by our method appear realistic and
maintain a high level of fidelity to the ground truth. The
proposed method exhibits powerful generalization capabilities,
negating the requirement for repetitive training across diverse
clothing types. This enhancement in efficiency and applicabil-
ity proves highly valuable in numerous scenarios requiring a
large number of outfit variations.

B. Ablation Study

Frequency control strategy. To demonstrate the effective-
ness of our proposed frequency control strategy, we investigate
the impact of GAT-LN layers fAttLN on the deformation
results of both loose and tight-fitting dresses. We approximate
the garments’ deformations using both the original graph
attention network (GAT) without Lipschitz normalization and
with Lipschitz normalization using different parameter values
(α = 1, 2, and 3). The qualitative results in Fig. 8 demonstrate
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Fig. 8: Qualitative results of ablation on GAT-LN layers.
Our experiments are conducted on two distinctly different
garments, and we compare the ground truth deformation,
approximated deformation without Lipschitz normalization,
and with Lipschitz normalization controlled by different values
of parameters.
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Fig. 9: Quantitative evaluation of ablation on the GAT-LN
layers: (a) RMSE of the predicted deformation, (b) error
distribution of predicted deformation.

that using GAT without Lipschitz normalization leads to a
loss of high-frequency details in both garments. In contrast,
applying fAttLN with α = 2 and 3 effectively generates
more natural effects. Additionally, we found that the garment
deformation around the belly position of sample 1 is better
represented in the result for α = 2. Furthermore, we conduct a
quantitative evaluation of the Root Mean Square Error (RMSE)
on test data with different settings (Fig. 9a). The absence
of Lipschitz normalization leads to unstable performance and
largest errors, whereas using fAttLN with the parameter values
of α = 2 and 3 exhibits similar performance. According to Fig.
9b, α = 2 yields slightly better with lower prediction error for
our data. Overall, the results provide evidence of the benefits
of using the proposed GAT-LN layers and selecting suitable
parameters to enhance the model’s performance in generating
realistic garment details.

Spectral descriptor. We report the effectiveness of the
proposed spectral descriptor by using average vertex distance

TABLE I: Quantitative results of ablation on the spectral
descriptor. We conduct four experiments to assess the impact
of the proposed spectral descriptor: without any global de-
scriptor, applying graph pooling to acquire global information,
substituting Euclidean distance for geodesic distance in the
affinity matrix, and utilizing our original method.

Edist (cm) Enorm (◦)
w/o global desc. 2.37 9.02
w/ graph pooling 2.15 8.67

w/ Euclidean distance 2.24 8.95
w/ spectr. desc. (ours) 1.90 7.53

Fig. 10: Qualitative results of ablation on the spectral de-
scriptor. Note the dynamic effects observed in the deformation
trend of the trouser legs, along with the intricate details of the
shoulder straps and back. Our method demonstrates superior
performance compared to the other alternatives.

Edist and average facet angular deviation Enorm between the
predictions and the ground truth. In Tab. I, we first remove the
spectral descriptor and do not use any global representations
in the network. This absence of global information hinders the
model’s ability to generalize to new garments, resulting in the
largest error. Next, following a similar manner as in [7], we use
a fully-connected layer and a max-pooling layer after graph
encoder Eg to obtain the global features, and then concatenate
them with local features from Eg . This implementation leads
to improved accuracy compared to the case without global
representation. This improvement is also expected, given that
the inclusion of global information enables the model to
perform effectively with new garments. Next, we maintain
our proposed network structure while replacing the geodesic
distance of the affinity matrix A with the Euclidean dis-
tance. However, this modification doesn’t lead to the global
description being invariant or robust to bending, resulting
in minimal improvement in prediction accuracy. Finally, we
show the results using our proposed spectral descriptor λ,
which yields the highest prediction accuracy. This achievement
can be attributed to the fact that our descriptor effectively
captures essential garment shape features, providing valuable
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Fig. 11: Qualitative evaluation of ablation on the spectral
descriptor with different dimensionality. The trouser leg area
is zoomed in on. With a dimension of 128, some details are
lost. In contrast, dimensions of 256 and 512 better encapsulate
global information, leading to richer fold patterns. In our study,
we opt for a dimension of 256 for the spectral descriptor.
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Fig. 12: Quantitative evaluation of ablation on the spectral
descriptor: (a) prediction error of a challenging sample (i.e.,
jumpsuit), (b) mean error of all test samples.

global prior knowledge to the model. In Fig. 10, we present
the qualitative results on a challenging garment, a wide-
legged jumpsuit. This jumpsuit has a large shape difference
from garments in the training set. Notably, the approach
without a global description and utilizing a replacement global
representation exhibits shortcomings in regions such as the
back, trouser leg, and shoulder strap (second row). In contrast,
the utilization of our spectral descriptor effectively captures
the dynamic swinging effect of the loose trouser leg during
forward steps, along with intricate wrinkles and folds, resulting
in a more successful inference.

We further validate the effect of the dimensionality z of the
spectral descriptor λ = [λ1, ..., λz] on the results . We explore
the impact of different descriptor vector lengths where we set
z to 128, 256, and 512, and present qualitative results in Fig.
11. We found that the results using z = 256, 512 demonstrate
stronger shape representation capabilities, leading to visually
pleasing outputs with finer details. Fig. 12a displays the quan-
titative results, confirming that the proposed spectral descriptor
enhances the performance of the model. Specifically, the use
of the spectral descriptor significantly reduces the deformation
error, with z = 256 resulting in the lowest error. Fig. 12b

TABLE II: Average ratio (%) of garment-body collision. We
measure three types of garments with new motion sequences
in the test set.

collision loss only SSCH [19] w/ collision handling
T-shirt 0.97 0.10 0.12
Dress 0.61 0.07 0.07

Jumpsuit 1.18 0.14 0.15

Fig. 13: Qualitative evaluation of collision handling. We
compare our approach with the most common-used collision
loss strategies, as well as the post-processing in TailorNet [6]
and ReFU [61]. Our method effectively removes collisions
while the garment surface is more natural and free of bulge
artifacts.

Fig. 14: Comparison of local mesh consistency after col-
lision removal using various methods. A Laplacian-based
consistency measure is employed, with the original mesh
before the collision removal serving as the reference baseline.
Correspondingly, a value of 0 signifies the non-collision (and
thus uncorrected) state. Regions with degraded consistency
(such as bulges) in the corrected outcomes are highlighted
in yellow, indicating higher values.

presents the mean error of all test data, which is approximately
1cm lower than the error of the challenging jumpsuit overall.
The results provide support for the effectiveness of the spectral
descriptor in accurately deforming dynamic garments.

Collision handling. To quantify the improvement in colli-
sion handling, we provide an evaluation conducted on three
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TABLE III: Quantitative evaluation of mesh local consis-
tency following three post-processing methods. The average
Laplacian-based consistency deviation is reported for collision
removal vertices across three different garment types.

TailorNet [6] ReFu [61] Ours
T-shirt 0.56 0.47 0.34
Dress 0.30 0.28 0.21

Jumpsuit 0.63 0.55 0.42

types of garments from the test set. These garments are
subjected to new motion sequences including walking, jump-
ing, and climbing. In Tab. II, we report the average per-
centage of garment vertices inside the body. As observed,
when dealing with previously unseen garments and motions,
a certain percentage of collided vertices are still present in
the results without post-processing, i.e., using collision loss
only. Our collision handling neural model detects and corrects
these collided vertices using the approximate SDF, effectively
reducing the collision rate by around 88%. This improvement
is achieved with high efficiency, requiring only around 0.2ms
per frame. As a result, clothing animation approaches a nearly
collision-free state that is visually imperceptible to the naked
eye. Moreover, it becomes evident that garments with more
relaxed fits, such as dress, tend to exhibit lower collision
rates in dynamic poses. Additionally, we compare ours with
the state-of-the-art learning-based collision handling method
SSCH [19]. SSCH offers an end-to-end solution for garment
deformation that manages garments in both pose space and
canonical space to be collision-free. The results show that
this method is highly effective in avoiding a substantial
portion of collisions. In comparison, our method has two
distinct advantages. Firstly, as we directly predict the SDF,
this format can be more readily adapt to scenarios involving
multiple garments with a single model. Secondly, based on
our empirical observations, we have found that many datasets
may contain problematic data with some degree of intra-body
penetration, e.g., a hand partially penetrating the body during
a hand-crossing movement. In such cases, using SDF for post-
processing leads to more stable performance during model
optimization than the end-to-end method of learning garment
deformations directly. Nonetheless, for most collision issues,
both ours and SSCH can effectively address them.

Next, we report the effect of our proposed collision han-
dling solution in Fig 13. As depicted, while penalizing the
penetration of clothing and body imposes a certain degree
of constraint on model learning, it cannot ensure a collision-
free state in some extreme test poses. Based on the collision
scenario, we implement a post-processing step in TailorNet [6]
to efficiently resolve collisions. However, this step results in
undesirable bulge artifacts, as indicated by the enlarged area.
The reason behind these artifacts is that the method crudely
employs a fixed distance larger than the penetration depth
to remove the vertices of garments that penetrate the body’s
interior without considering the positions of surrounding ver-
tices. Then, we experiment with the ReFU approach [61] to
displace the penetration vertices away from the body, guided
by an estimated scale. However, since the scale estimation

does not yet incorporate the states of neighboring vertices, the
outcome still exhibits issues like “pump out”. At the rightmost,
we present the result produced by our proposed method. By
incorporating adaptive adjustments for the collided vertices,
the corrected mesh surface appears more natural and achieves
higher visual quality. Next, for a quantitative evaluation of
collision processing quality, we introduce a Laplacian-based
metric to quantify the degree of local consistency in the region
around the collision resolved vertices. Specifically, for the
mesh before and after the collision removal, we compute their
Laplacian matrices LC , L ∈ RN×N with the half-cotangent
weighting function. Then, we define the local consistency
deviations as dcons = |diag(L) − diag(LC)|, with lower
values indicating higher consistency. As shown in Fig. 14,
we compare the local consistency between ours and two other
post-processing methods. For those collision-resolved vertices,
the average consistency deviation are shown in Tab. III. This
result further validates that our collision handling method
generates high quality processing details. However, it is also
important to recognize that the post-processing techniques
employed by TailorNet generally have the advantage of higher
reliability.

C. Comparisons

Method capacity. We conduct a comparison of our method
with recent learning-based approaches for garment deforma-
tion, including SNUG [14], Neural Cloth Simulation (NCS)
[13], and HOOD [18]. A comprehensive analysis of deforma-
tion characteristics, model generalization, batch support, and
collision situation is presented in Table IV. Our method stands
out by achieving dynamic clothing deformations for arbitrary
garments, irrespective of their topologies and vertex counts,
as well as different body shapes. This feature enhances the
applicability of our approach in scenarios demanding diverse
garment types, like virtual try-on. Furthermore, our method is
flexible in terms of training and execution batch sizes, leading
to enhanced efficiency in both training and running processes.
Regarding the collision situation, we define an imperceptible
as one where the collision rate between the garment and the
body remains under 0.15%. In contrast to other methods where
approximately 0.28% of clothing vertices intersect with the
body, our approach excels in producing collision-free garment
animations that are virtually imperceptible to the naked eye.

Qualitative evaluation. We also present qualitative results
from different methods in Fig. 15. For implementation, we
base our comparisons on publicly available code. It is worth
mentioning our approach and HOOD achieve their results us-
ing a single trained model, whereas other methods necessitate
separate training for each individual garment. While SUNG
only released the model inference codes, we reconstructed the
entire model by leveraging their codes and the details provided
in the paper. The technique described in SUNG, borrowing
SMPL skinning weights from the closest body vertex in rest
pose, is ineffective for loose garments. We thus implemented a
modified version by sampling and averaging the body weights
of surrounding vertices for the garment weights. While there
are minor discrepancies in the architecture and training details,
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Fig. 15: Comparison with state-of-the-art neural dynamic clothing deformation methods. Rows from top to bottom : ground
truth, SNUG [14], Neural Cloth Simulation (NCS) [13], HOOD [18], and our prediction. Columns represent deformation with
various garments and motions: (a)-(b) moving forward and hanging leg raise, (c)-(e) palm striking and kicking, (f)-(h) layup.

they do not influence the qualitative results and the key idea
in the original paper. For NCS, following their description
and empirical evidence, we reimplemented their method by
gradually increasing the impact of collision and inertial force
loss from about 1/10 to 1 unit, in line with stretch and
shear conditions. Similarly, we replace their original skinning

weights by adopting the same method as for SNUG, which
involves randomly sampling and averaging body skinning
weights. These improve the dynamics of complex garments
and enhances convergence stability. We also reimplemented
HOOD in accordance with their description and original code.

As observed in the results, for motions with low dynamics:
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(a) (b)

Fig. 16: Perceptual study. The preference ratio for (a) detail
expressiveness and (b) dynamic effect.

forward movement (a) and hanging leg lifts (b), prior methods
can yield roughly reasonable deformations, but some finer
details are lacking in HOOD’s prediction. In contrast, our
method demonstrates its capability to predict a substantial
portion of folds and dynamic trends, primarily due to the
effectiveness of our proposed spectral strategies. In scenarios
where movements involve actions such as the character’s palm
strikes and body twisting in cases (c) and (d), we can observe
a continuous swinging motion of the dress hem from left
to right. However, SNUG does not adequately capture this
dynamic behavior, particularly in the fold direction of the
dress. This deficiency in capturing dynamics can be attributed
to the inherent non-dynamic nature of SNUG, as thoroughly
analyzed in [13]. This static behavior also persists in the
test samples (e)-(h), where the dress fails to exhibit natural
movement in sync with the character’s motions. Conversely,
both NCS and HOOD demonstrate the ability to predict a
majority of clothing dynamics, with the resulting deformations
aligning well with the character’s movements. Nevertheless,
HOOD does exhibit a limitation in accurately predicting the
hemline deformation during the leg lift movement (e). Addi-
tionally, all methods, except for ours, struggle with generating
detailed deformations, particularly noticeable in the shoulder
region of motion (c). Regarding the layup motion (f)-(h), our
method stands out among other learning-based approaches by
producing highly plausible and dynamic garment deforma-
tions. Unlike methods that utilize unsupervised schemes, our
approach employs supervised learning, allowing us to create
a model capable of accurately predicting specific deformation
patterns based on input conditions. While supervised learning
involves initial effort in preparing ground truth data, it offers
targeted predictions that are particularly valuable for precise
control over the training process. Additionally, our approach
allows for more direct comparisons with ground truth, facil-
itating a clearer evaluation of prediction accuracy compared
to unsupervised methods, which can be more challenging
to assess. Furthermore, our supervised model benefits from
transfer learning, enabling easy adaptation to different garment
types through direct application or fine-tuning. This efficiency
stands in contrast to the repetitive training required by methods
like SNUG and NCS.

TABLE IV: Comparison with state-of-the-art methods in terms
of deformation dynamics, model generalization, batch support,
and collision situation.

Dyn-
amics

Genera-
lization

Batch
support

Imperceptible
collision

Learning
scheme

SNUG ! % ! % unsupervised
NCS ! % ! % unsupervised

HOOD ! ! % % unsupervised
Ours ! ! ! ! Supervised

TABLE V: Timing performance comparison with state-of-the-
art graph learning-based methods.

Dynamic Speed Speed (batch)

GarNet++ % 1.2 fps 16.5 fps
FitGar % 47.6 fps 380.9 fps
HOOD ! 13.4 fps 13.4 fps
Ours ! 38.1 fps 307.8 fps

User study. Ultimately, users’ perceptions of garment defor-
mation rely heavily on visual satisfaction, rendering the need
for ground truth as a reference for fairness unnecessary. Thus,
we compare these methods with a focus on user preferences,
aiming to uncover potential differences in perceptual clothing
animation. In this perceptual experiment, our goal is to assess
which prediction displays more detailed expressiveness and
dynamic effect. We recruited 32 participants to watch videos
featuring garment animations from four methods. Among
the participants, 18 had experience in computer animation
research, while 14 were newcomers to the field. To ensure
fairness, the order in which videos from different methods
were shown was randomized. Participants were then asked
to rate the four methods, allocating scores of 3, 2, 1, or 0
based on their preferences for deformation detail and dynamics
after viewing the videos. As shown in Fig. 16, our method
achieves the highest preference ratios in both visual quality
metrics: deformation detail and dynamics. This demonstrates
the advantages of our approach over state-of-the-art methods
in terms of visual perception.

D. Model Performance

Our model can infer one frame with a garment consisting
of about 10K vertices and 20K faces in approximately 26 ms,
achieving a frame rate of 38 fps on a computer equipped with
an Intel Core i9-13900K CPU and an nVIDIA GeForce RTX
4090 GPU. By running batched frames with a batch size of 10,
the model can achieve a frame rate of about 300 fps. Moreover,
as the video memory capacity expands, our model can process
larger batches of data in parallel, thereby effortlessly achieving
frame rates well beyond real-time requirements. In general,
the inference speed of neural network models increases lin-
early with increased video memory, requiring only minimal
modifications to existing code.

In Tab. V, we also provide performance comparisons with
other learning-based clothing deformation methods, which
include GarNet++ [4], FitGar [9], and HOOD [18]. All
these methods utilize graph neural networks for inferring
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deformations. While GarNet++ and FitNet are designed for
static deformations, the advanced HOOD method is capable
of generating dynamic clothing effects. However, HOOD’s
inference speed is restricted due to its limitation of batch
size 1. In contrast, our approach showcases exceptional ef-
ficiency, achieving an inference speed approximately 18 times
faster than HOOD. On the other hand, when compared to
the garment-specific design of SNUG and NCS, our method
(alongside the other methods detailed in Tab. V) necessitates a
more complex graph network structure to satisfy wider-ranging
generalization needs. It’s worth noting that while SNUG and
NCS may have superior efficiency, our approach still stands
out by being approximately 25 times faster than physics-
based simulation techniques such as those employed in cloth
simulation tools [62].

VI. CONCLUSION AND FUTURE WORK

We have presented a novel approach to efficiently estimate
dynamic garment deformation using a unified model. Our
work can learn the dynamic behavior of arbitrary garments
under consistent body motion, without special constraints on
garment topology, vertex count, and degree of fitness. We
achieve this by introducing the frequency-control strategies
for the deformation network and a spectral global descriptor
for diverse garment representation. These techniques enable
our deformation estimator to generate personalized and vivid
details. We believe that this spectral technique also has the
potential to address issues that have been encountered in
other animation areas when utilizing graph neural networks.
In addition, we propose a neural collision handling method
that automatically detects and corrects penetrations between
garment-body pairs, resulting in more realistic and natural-
looking results.

There are still a few weaknesses that need to be addressed
for further improvement. First, while we were able to mitigate
the over-smoothing effect by applying a frequency control
strategy to graph attention layers, we did not extend this
strategy to other layers in the network, which may have
resulted in the spectral bias problem not being fully addressed.
In the future, exploring spectral control for the entire network
is a promising direction. Second, our current collision handling
method relies on the estimated SDF of the human body
for detecting and correcting garment penetrations. While we
have validated its effectiveness in handling SMPL bodies that
were seen during training, the network may not be able to
accurately estimate subtle collisions of unseen bodies. In the
future, the problem of garment-body collisions can be further
explored based on implicit surface studies such as NASA
[63], DeepSDF [54], and A-SDF [55]. Notably, A-SDF shows
promise due to the ability to handle articulation variations
and the generalization capacity for unseen joint angles. This
capability suggests the potential for A-SDF to serve as an
innovative loss function in the future, for addressing self-
collision challenges in garment simulations.
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