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Abstract—Given the critical need for more reliable autonomous
driving systems, explainability has become a key focus within the
research community. In autonomous driving models, even minor
perception differences can significantly influence the decision-
making process, and this impact often diverges markedly from
human cognition. However, understanding the specific reasons
why a model decides to stop or keep forward remains a significant
challenge. This paper presents an attribution-guided visualization
method aimed at exploring the triggers behind decision shifts,
providing clear insights into the underlying “why” and “why
not” of such decisions. We propose the cumulative layer fusion
attribution method that identifies the parameters most critical
to decision-making. These attributions are then used to inform
the visualization optimization by applying attribution-guided
weights to crucial generation parameters, ensuring that decision
changes are driven only by modifications to critical information.
Furthermore, we develop an indirect regularization method that
increases visualization quality without necessitating additional
hyperparameters. Experiments on large datasets demonstrate
that our method produces insightful visualization explanations
and outperforms state-of-the-art methods in both qualitative and
quantitative evaluations.

Index Terms—Autonomous driving, visualization explanation,
decision attribution, generative adversarial networks.

I. INTRODUCTION

AUTONOMOUS vehicles have captured significant inter-
est from the research community, owing to their poten-

tial to diminish traffic accidents and enhance transportation
efficiency [1]. With the progression of deep neural network
(DNN) technologies, models for autonomous driving have
experienced substantial advancements. Increasingly complex
DNNs are applied to real-world traffic scenarios, including
trajectory tracking [2], [3], object detection [4], [5], scene un-
derstanding [6], [7], vehicle localization [8], [9], reinforcement
learning-based driving control [10], [11] and motion planning
[12], [13]. Notably, recent years have seen the rise of end-
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to-end autonomous driving models, which integrate almost all
driving functionalities into DNN architectures [14].

Decision-making in autonomous vehicles is a crucial pro-
cess that involves selecting a specific driving action, such
as moving forward, stopping, turning left, or turning right,
from a set of discrete control options. This selection is based
on the current status of the ego-vehicle and its surrounding
environment [15]. As the most safety-sensitive aspect of
autonomous vehicle operations, the decision-making process
is essential for ensuring safety and efficiency. However, the
“black-box” nature of DNNs poses significant challenges for
engineers attempting to understand and analyze the underlying
reasons for specific decisions, particularly the causes behind
shifts in decision-making.

In autonomous driving models, subtle variations in percep-
tion data can lead to different driving decisions. By inten-
tionally generating visual modifications that trigger decision
changes, we can derive meaningful insights into the decision-
making process [16], [17]. Building on this idea, we introduce
our optimization-based visualization method, which produces
images tailored to specific decision requirements as assigned
by users. This method ensures that the generated images
remain similar to the original perception data yet introduce
variations that significantly influence driving decisions. By
comparing the generated results with the original reference
image, we can identify the critical factors and conditions
influencing decisions made by an autonomous driving model.

Despite the conceptual clarity of this idea, two challenges
emerge during practical implementation. The first challenge
involves ensuring the effectiveness of visualization expla-
nations. Such a visualization method typically requires in-
corporating additional generators as prior constraints, such
as generative adversarial networks (GANs) [18], and more
specifically, BlobGAN [19] in our method. These constraints
act on the full input information, which could be problematic
in autonomous driving scenarios that feature numerous objects
in one input. Optimizing the full input information often
fails to accurately target the critical objects that influence
decision-making, thereby introducing uncontrollable noise. To
address this issue, we introduce attribution to suppress changes
in unimportant regions during visualization optimization. In
particular, we develop the cumulative layer fusion attribution
(CLFA) method, which identifies the generator parameters
most relevant to the decision. Then, we use the attributions to
guide the optimization process, focusing primarily on updating
critical information. This approach generates visualization ex-
planations that closely resemble the reference while effectively
highlighting the key factors influencing decision-making.
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The second challenge we address is the complexity involved
in balancing image generation regularization terms. Numerous
efforts have been made to design regularization methods that
enhance the quality of image generation [20]–[23]. However,
the introduction of regularization terms often comes with addi-
tional hyperparameters, making it difficult to achieve balance.
To this end, we introduce an indirect regularization technique
that can be seamlessly incorporated into the objective function
without necessitating extra hyperparameters. The idea behind
our method is to compel the optimization to iteratively update
towards clearer and more well-defined object distinctions by
applying controlled perturbations.

To validate our proposal, we conduct extensive experiments
on the BDD100k [24] and BDD-OIA [25] datasets. Fig.
1 shows an example of our attribution-guided visualization
explanations. Initially, the decision is “Stop,” and the blob map
is generated using the GAN generator. Subsequent blob-level
attribution computation identifies the critical blobs. Through
iterative optimization of these blob parameters under the
guidance of blob attributions, we generate visualization ex-
planations. These explanations reveal the objects that trigger
a decision change from “Stop” to “Forward.” The results
indicate that the decision tends to shift when surrounding
cars are distant; interestingly, even if the front car remains
close but its brake lights are off, the decision can still shift
from “Stop” to “Forward.” This suggests that the autonomous
driving model may be influenced by local features, such as the
presence or absence of brake lights, affecting decision-making
during movement and braking. With these attribution-guided
visualization explanations, we are better equipped to detect
these subtle biases in autonomous driving models.

The main contributions of this work are summarized as
follows:
• We propose a novel visualization idea that uses attri-

butions to constrain the generator, specifically focusing
the optimization on the objects that directly impact au-
tonomous driving decisions, thereby effectively improv-
ing the quality of visualization explanations.

• At the technical level, we develop the cumulative layer
fusion attribution model by extending the Aumann-
Shapley method [26], allowing for more accurate blob-
level attribution computation compared to state-of-the-
art alternatives. Additionally, we introduce an indirect
regularization method that incorporates image processing
approaches to improve visualization quality without the
need for introducing extra hyperparameters.

We validate our proposal on two datasets through mul-
tiple quantitative and qualitative experiments. The results
demonstrate the advantages of our method in identifying and
understanding the critical information that influences driving
decision-making.

II. RELATED WORK

A. Visualization Explanation Methods

Visualization explanations involve using a predefined objec-
tive function to generate specific encodings into an image that
carries a particular significance. The original concept of using

Fig. 1. Attribution-guided visualization explanation sample. Initially, the
model’s decision is “Stop.” Through the process of encoding and attribution
computation, key blobs directly related to this decision are identified, as
illustrated in the bottom-right corner, where the contributions of each blob are
also displayed in a bar chart. By primarily focusing on iteratively updating
these identified blobs, we generate “Forward” visualization explanations,
highlighting specific scene modifications that critically impact these two
contrasting decisions.

an energy minimization framework for DNN visualization was
developed to understand the hidden representations within net-
works [27]. Subsequent studies demonstrated that the methods
based on StyleGAN can efficiently achieve semantically mean-
ingful disentangled representations [28], [29]. DIEG [30] can
produce diverse GAN visualizations by augmenting inverting
latent embeddings with different latent samples, a technique
crucial for analyzing the capability boundaries of DNNs. E4E
[31] was designed to allow subsequent editing of inverted
real images, producing particularly high-quality results on
facial datasets. SDIC [32] developed an advanced visualiza-
tion technique that incorporates spatial-contextual discrepancy
information, demonstrating significant capabilities in image
modification.

Some studies have applied generative models to the in-
terpretation of autonomous driving, which include: STEEX
[33], OCTET [34], and SAFE [35]. STEEX was one of the
first research efforts to utilize generative models to explain
autonomous driving decisions. OCTET further enhanced the
diversity of visualizations by introducing BlobGAN to encode
images, enabling the generation of counterfactual explanations
that trigger contrast decisions. SAFE is the most recent and
relevant method to our research, building upon STEEX and
OCTET. It significantly improves the quality of visualizations
by using saliency maps to control the optimization regions,
making explanations clearer. The primary distinction between
our method and these previous studies lies in the flexibility of
controlling the optimized objects. While SAFE uses saliency
maps to identify the regions to be updated, saliency maps
struggle to cover multiple regions and often extend beyond the
object itself, generating uncontrollable disturbances around the
updated objects.

GAN-based visualization generation methods typically offer
better generation quality, but they are inherently limited by the
sample distribution of pretrained GANs, potentially leading to
misleading results when facing unknown distributions. Meth-
ods that directly invert the model, although of lower generation
quality, avoid the biases inherent in GANs. Yin et al. [20] pro-
posed GradInversion, which balances feature representations
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across all layers to execute inversion generation. Hatamizadeh
et al. [21] introduced GradViT which enables high-quality
image reconstruction for transformer-based networks. Shi et
al. [36] designed a visualization method for attention-based
visual networks, allowing the analysis of differences between
different network architectures. Although these methods avoid
the biases associated with pretrained GANs, their visualization
qualities are subpar, making them challenging to fulfill the
requirements of practical applications.

B. Attribution Explanation Methods

Attribution methods are capable of quantifying the con-
tribution of input features to the outputs, serving as local
explanation techniques. Among these methods, those leverag-
ing backpropagation are particularly prevalent. This category
includes techniques such as Gradient Shapley values [37], [38],
Shapley value propagation [39], and Aumann-Shapley values
[26], [40], along with other approaches that rely on gradient
accumulation or Shapley value estimators [41]–[45]. Other
pixel attribution methods like GradCAM [46] and LRP [47]
show promise but are challenging to adapt to GAN models
well with only minor modifications, leading us to exclude these
techniques from our consideration in further comparison.

Generally, current studies on DNN attributions have effec-
tively identified critical regions at the image level. Nonethe-
less, our work necessitates the computation of attributions at
the blob level. A unique aspect is that the blob generator is
not directly tied to the decision model but instead functions
as an independent model. Ensuring that critical information
from the decision model is not lost and the backpropagation
to the blob parameters is accurately implemented are central
challenges in designing a blob attribution computation model.

C. Discussion on Related Work

Several established techniques exist for visualization gen-
eration. The most relevant to our work include E4E, SDIC,
STEEX, OCTET, and SAFE. Technically, E4E and SDIC
have addressed the challenge of encoding images into latent
representations using GANs and subsequently reconstructing
the images from these representations. STEEX and OCTET
established the basic framework for visualization in the au-
tonomous driving domain. More recently, SAFE has signif-
icantly improved the visualization quality by incorporating
saliency maps into the generation process, actively controlling
the optimization regions. Because this optimization process
leaves most pixels unchanged, it results in a substantial in-
crease in visual similarity.

Despite the maturity of visualization techniques, existing
methods often neglect object-level information crucial for
decision-making. We argue that this information is essential
for two key visualization requirements: maintaining similarity
between the visualization and the original input, and enabling
effective alteration of the original driving decision. For ex-
ample, if a driving decision is primarily influenced by the
taillights of the car ahead, then the ability to identify and
manipulate those specific taillights is crucial for generating
a meaningful visualization. Without access to this object-level

information, visualizations risk being ineffective in altering
the decision or may introduce excessive changes to the orig-
inal input, rendering the visualization difficult to analyze.
Therefore, we introduce decision attribution into visualization
generation and propose cumulative layer fusion attribution
(CLFA) to identify the object-level information influencing the
driving decision. This attribution then serves as a guide for
the visualization process. Our strategy focuses on primarily
optimizing and updating the objects influencing the decision
to generate the visualization. This targeted optimization fa-
cilitates decision alteration while minimizing changes to the
original input.

III. ATTRIBUTION COMPUTATION

In the process of visualization, the conventional practice
of employing generators as a priori constraints generally
involves processing the entire image. This way can hinder
accurate modifications of key regions that influence decision-
making. As a solution, we introduce attributions to detect
key objects in traffic scenes, thereby minimizing interference
from irrelevant objects. In this section, we start by discussing
the widely used Aumann-Shapley attribution method. We
then present our attribution method, cumulative layer fusion
attribution (CLFA), specifically designed for GAN generators
in autonomous driving scenarios.

A. Aumann-Shapley Attribution

A crucial aspect of our goal is to determine which objects
in a given scenario most significantly influence the decision-
making of an autonomous driving model. A well-established
method for deriving such explanations is the Aumann-Shapley
(AS) attribution technique, originally developed in the context
of game theory. This technique quantitatively evaluates the
contribution of each factor to the final decision. In adapting
the AS method for DNNs, consider an input X and a baseline
X̄ , the latter representing the absence of information. The AS
method introduces a path function µ(t) = X̄ + t(X − X̄),
which ensures that µi(0) = x̄i and µi(1) = xi, with t ∈ [0, 1].
The AS attribution for each feature i is then calculated by
integrating the gradient of the model output along this path:

φi = ∆xi

∫ 1

t=0

∂fd (µ(t))

∂xi
dt, (1)

where fd represents the output decision of the model f . The
term ∆xi = xi−x̄i is the difference in feature values between
the input and baseline. This integral computes how sensitively
the model’s output responds to changes as the input transitions
from the baseline to the actual input. In practical applications,
direct integration in DNNs is not feasible due to computational
complexity and high dimensionality. Consequently, discrete
approximations of the AS values are necessary. We use the
Gauss-Legendre quadrature for this approximation:

φi = ∆xi

K∑
k=1

1

(1− ξ2
k) [P ′K(ξk)]

2

∂fd (µ(ξk))

∂xi
, (2)

where K is the number of discrete points used in the approx-
imation, ξk denotes the chosen quadrature points within the
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Fig. 2. An overview of the visualization explanation generation. The decision process information primarily aids in the attribution computation to identify the
key blobs. Subsequently, by optimizing the visualization objective function, we can progressively derive the visualization explanation that results in a change
in the decision. In this scenario, the decision changes from “Stop” to “Turn Right” when the car positioned to the right is farther away. Note the change in
the length of the yellow arrows in the images. Typically, modifying only the critical information directly related to the decision can lead to a significant shift
in the decision.

standard interval for integration, and P ′K(ξk) is the derivative
of a polynomial at the point ξk. This equation quantifies the
contribution of individual input features to the output.

B. Cumulative Layer Fusion Attribution

In the preceding section, we introduce the AS method. How-
ever, our specific application focuses on attributing contribu-
tions not to the images themselves but to the decision-relevant
parameters within a generator. Blob-level attributions allow
us to directly modify these parameters, thereby influencing
driving decisions. The decision-making process involves two
independent models: the GAN generator and the autonomous
driving decision model, as shown in the upper part of Fig. 2.

To this end, we extend the concepts of X and its baseline
zero X̄ to denote the blob parameters in the generator, while
fd(X) represents the output decision based on these input pa-
rameters. Regarding the generator, we employ a differentiable
BlobGAN due to its capability to encode objects into semantic
blobs. This feature allows us to adapt the original scenario
by modifying the blob parameters. Each blob is characterized
as an ellipse defined by several parameters: the centroid,
scale, aspect ratio, and rotation angle. Additionally, each blob
is assigned structural and stylistic features ψ, allowing for
detailed modifications such as altering the shape and color
of traffic lights within a traffic scene.

Direct computation of the gradient of the BlobGAN pa-
rameter path function with respect to the decision output
often results in information loss, leading to blob attributions
that may not accurately represent the specified decisions.
A similar issue has been noted in previous research [46],
[48], which suggests that incorporating information from other
hidden layers can alleviate these inaccuracies. Inspired by
these insights, we propose cumulative layer fusion attribution
(CLFA), a method that accumulates additional hidden layers

into the AS computational model to achieve more accurate and
focused attributions.

First, the input parameters X are processed through l layers,
represented by the function of f [l], to obtain the intermediate
feature map:

A[l] = f [l](X). (3)

Based on the feature map A[l], its baseline Ā[l] can be derived
by minimizing its spatial dimensions of A[l], followed by
broadcasting the minimized values across these dimensions.
Next, the interpolant Ã[l] along the path µ[l] from Ā[l] to A[l]

can be expressed as:

Ã[l] = µ[l](t[l]). (4)

Finally, we define the cumulative layer fusion attribution by
integrating contributions over intermediate states from multi-
ple layers with nesting integrals:

φi = ∆xi

∫ 1

t=0

∂fd
(
µ[0](t[0])

)
∂xi

· · ·∫ 1

t=0

∂fd
(
µ[l](t[l])

)
∂xi

dt[l] · · · dt[0].

(5)

For the sake of notational simplicity, we define fd as a
function that changes based on its input. For instance, if
the input is µ[0](t[0]), then fd represents the model that
takes blob parameters as input and outputs a decision. If
the input is the lth layer’s feature µ[l](t[l]), then fd refers
to a truncated network model at this layer, where the input
consists of features from the lth layer and the output is the
decision. In practice, to implement the CLFA method, we
perform a discrete numerical approximation following the
same principles as Eq. (2). Compared to the original AS
method, the advantage of CLFA lies in its ability to accumulate
contributions from various intermediate states throughout the
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propagation. This accumulation enhances both the stability
and the magnitude of the gradient signal across deep layers,
offering a more detailed and comprehensive understanding of
how input parameters across different layers influence the final
decision.

IV. ATTRIBUTION-GUIDED VISUALIZATION EXPLANATION

Visualization has the capacity to create various scenarios
that trigger different driving decisions, and this process can
be formulated as an optimization problem. For our visu-
alization explanations, we aim to generate an image that
closely resembles the reference image, with only key objects
modified. These modifications are designed to provoke shifts
in decision-making, allowing us to understand autonomous
driving decisions by observing the differences between the
reference and the visualization images. An overview of our
attribution-guided visualization process is shown in Fig. 2.
Note that, the visualization process in the lower part of Fig. 2
also incorporates the GAN generator and the decision model
for optimization generation.

The principle behind the visualization explanation is simple;
however, the key challenge lies in generating high-quality
results. We find that visualization processes tend to favor
low-frequency information, which often results in blurred
outputs. Although numerous regularization techniques have
been developed to mitigate this issue [20]–[23], another chal-
lenge remains: the difficulty in balancing the hyperparameters
associated with each additional regularization term.

To address this, we develop an indirect regularization
method. This method introduces random perturbations during
the optimization, indirectly promoting the generation of clearer
images to compensate for these disturbances. Specifically, we
incorporate two differentiable image processing techniques,
including random jitter and generalized Kuwahara filter [49].
We find that edge-preserving filters generally yield satisfac-
tory results. Ultimately, we select the Kuwahara filter for its
superior visual effects on high-contrast images. Our indirect
regularization can be represented as:

freg(X; τ, ε) = fjit (fkuwa (I(X); τ) ; ε) , (6)

where the image I is generated with the blob parameters X .
This sequence involves first applying a filter with a randomly
selected weighting function from eight sectors of a disc as
discussed in [49]. The weighting function is indexed with a
discrete random variable τ which is uniformly distributed over
the set {1, · · · , 8}. Additionally, the fjit function introduces
a controlled amount of spatial jitter, parameterized by ε,
ranging from −T to T . Here, T can be empirically set as the
largest integer less than (H + W )/100. These regularization
disturbances can enhance the overall robustness and visual
coherence of visualization images.

With these foundational concepts established, we can for-
mally define our attribution-guided visualization objective
function, which comprises two distinct loss functions. The
decision loss is specifically designed to influence and alter the
driving decision. The blob loss is guided by attributions and
aims to maintain the stability of blob parameters that are not

directly related to the decision-making process. The objective
function can be represented as:

X∗ = arg min
X

Eτ,ε [Ldec(X; τ, ε)] + Lblob(X), (7)

where Eτ,ε[·] indicates the expectation of two random variables
τ and ε. The hyperparameter λ is used to balance these two
loss terms, ensuring that they have comparable magnitudes.
For the decision term, we follow the visualization framework
discussed in [50] to implement our loss by pushing the
decision opposite to the original prediction:

Ldec(X) = (s− 1) log
(
1− fd(X)

)
− s log

(
fd(X)

)
, (8)

where s ∈ {0.05, 0.95} represents the score opposite to
the original decision. We do not use a binary s for stable
numerical optimization. Decision losses can be accumulated
multiple times. For instance, to shift to a specific decision, we
simply need to incorporate an additional decision loss, i.e.,
the decision index d does not necessarily correspond to the
decision output by the autonomous driving model.

To ensure the visualization results remain visually similar
to the original image, we define a set U, which includes
indices corresponding to blobs with low attributions. These
indices reflect blobs that are less significant for the model’s
decision-making process. The sum of the attributions of the
blobs within the set does not exceed 40% of the total sum.
The set Ū comprises the indices of the rest of the blobs
with higher contributions. The corresponding loss function,
aimed at minimizing the differences in unimportant regions,
is expressed as follows:

Lblob(X) = λ
∑
b∈U
‖Xb

ori−Xb‖2 +
∑
b∈Ū

e−(γb−β)‖Xb
ori−Xb‖2,

(9)
where Xb

ori and Xb represent the blob parameters of the
reference and the visualization explanation, respectively. λ is
a hyperparameter to balance two terms. γb =

∑
i φ

b
i is used to

weight the important blob parameter changes. Upon sorting the
blob attributions, the critical blob index b1 is determined when
the cumulative attribution score reaches a predefined threshold
of the total attribution score, e.g., 60%. The subsequent blob
index is denoted as b2. β represents the average value between
γb1 and γb2 . In our method, we specifically use the attributions
of blob features ψ to define the set U, as these features
contain more detailed information about the object semantics
compared to other parameters of the blob ellipses. To mitigate
the effects of outlier values and ensure a stable optimization
process, we maintain an exponential decay weight greater than
0.01. The optimized result X∗ is forwarded into the GAN
generator to produce the final visualization explanation.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Implementation Details

Our experiments utilize the BDD100k dataset, which con-
sists of 100k images. Additionally, we incorporate the BDD-
OIA, an extension of 20k scenes from BDD100k, annotated
with binary labels for potential ego-vehicle actions: “Forward,”
“Stop,” “Turn Left,” and “Turn Right.” We train a multi-label
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binary DenseNet on the BDD-OIA dataset as the model for
autonomous driving explanations, following the implementa-
tion previously described in [51]. We also train a BlobGAN on
the BDD100k dataset as per the settings [19]. The number of
blobs is increased to 40 to match the object classes of panoptic
segmentation labels in the BDD dataset. Before generating an
explanation, we need to obtain the blob representation of an
image. This is achieved through an inversion process, which
we implement according to the technique described in [19].

Based on our experimental observations and attribution
computational performance, we empirically select three spe-
cific layers for attribution computation. These layers include
the input layer, the layer after two max pooling operations, and
the penultimate max pooling layer. The input layer represents
the first layer that processes blob parameters and is located in
the GAN model instead of the decision model.

We set the sample points K = 20 for the input layer and
K = 10 for other layers. This configuration is sufficient for the
attributions to nearly sum up to the specific output score for
our case, i.e., roughly satisfying the “completeness” axiom of
Shapley values as stated in [52]. Additionally, our attribution
computation process is nested. In particular, if we select the
layers {0, l1, l2}, then, based on Gauss-Legendre quadrature,
the definition of the interpolant Ã is defined as follows:

X̃ =
1

2

(
(1− ξk[0])X̄ + (1 + ξk[0])X

)
,

Ã[l1] =
1

2

(
(1− ξk[l1])Ā[l1] + (1 + ξk[l1])A[l1]

)
,

A[l1] = f [l1]
(
µ[0](ξk[0])

)
,

Ã[l2] =
1

2

(
(1− ξk[l2])Ā[l2] + (1 + ξk[l2])A[l2]

)
,

A[l2] = f [l2]
(
µ[l1](ξk[l1])

)
.

(10)

Although the attribution computation is performed on the full
blob parameters, for the purpose of key blob detection, specif-
ically determining the set U in Eq. (9), we sum attributions of
features ψ as a scalar value for each blob.

For the visualization explanation optimization, we set the
hyperparameter λ to 10 to ensure that most irrelevant image
regions do not change obviously. We employ the Adamax
optimization algorithm [53] and implement an exponential
decay of the learning rate, which is adjusted in response to
changes in the loss.

B. Evaluation of Blob Attribution

In this section, we assess our attribution method against
various state-of-the-art methods. Attribution computation is
crucial for our visualization explanation task, aiming to
precisely identify information significantly influencing the
decision-making process. To validate the accuracy of blob-
level attributions, we conduct a comparative analysis against
several methods including GradShap [38], IDGI [41], AS [40],
INA [42], and PropShap [39].

In Fig. 3, we present three sets of examples for comparison.
The first column displays the original inputs alongside their
corresponding blob maps. The first row of each example shows

TABLE I
QUANTITATIVE COMPARISON OF DECISION SCORE CHANGES AFTER

COLORING GRAY NON-ESSENTIAL REGIONS.

Foward Stop Turn Left Turn Right

GradShap 0.278 0.273 0.331 0.359
IDGI 0.220 0.214 0.275 0.277
AS 0.251 0.256 0.312 0.322
INA 0.304 0.298 0.354 0.376

PropShap 0.237 0.243 0.293 0.306
CLFA 0.181 0.178 0.247 0.261

the critical blobs determined by blob-level attributions. We
sort the blobs according to their attributions and identify those
whose combined contributions account for 60% of the total
attribution sum. That is, only the highly relevant blobs are
depicted. Intuitively, the critical blobs identified by our method
align closely with human cognition.

To quantitatively validate our method, we design an indirect
evaluation metric for blob attribution. We first remove the most
important blobs from the original blob maps, ensuring that
no more than five blobs are removed, to detect significant
regions in driving scene images. Then, we generate a new
image with only unimportant blobs and identify unchanged
regions compared to the reference image. These regions of
lesser importance are then colored gray as shown in Fig. 3.
Previous methods show some failures in targeting these critical
regions or included irrelevant objects, leading to redundancy.
In contrast, our method accurately identifies critical regions,
such as the brake lights in the second example and the road in
the last example, with minimal impact from irrelevant objects.
We then forward these images, where non-critical regions have
been de-emphasized, into the decision model to obtain new
decision scores, denoted as snew. The change ratio in score is
quantified by |snew − sori|/sori.

The quantitative results of the different methods for four
driving decisions are presented in Table I, where a lower
value indicates better performance. Our CLFA consistently
demonstrates the smallest variation in score changes across
various decision scenarios, highlighting its robustness in blob
attribution.

We also note that decisions related to “Forward” and “Stop”
show less variability compared to those involving “Left” or
“Right” turns. This consistency is likely due to the reliable
identification of influential objects such as tail lights and
traffic lights, which are crucial for “Forward” and “Stop”
actions. These elements are consistently highlighted by various
methods, ensuring stable decisions even when other regions
are de-emphasized. Conversely, decisions about turning left or
right tend to be more affected by variations in the surrounding
environment, making them more prone to changes when
subjected to similar perturbations.

C. Evaluation of Visualization Results

In this section, we explore and compare various visual-
ization explanation methods. Our analysis is not limited to
GAN-based approaches, including DGN-AM [27], SDIC [32],
DIEG [30], OCTET [34], SAFE [35], and E4E [31], but also
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Fig. 3. Qualitative comparison of blob-level attribution. We show three sets of examples, the first and second of which are “Stop” decisions and the third is
a “Forward” decision. For each example, the first row displays the critical decision-relevant blobs identified by various attribution methods. The second row
illustrates the critical regions impacting the decision, highlighted after coloring gray the less relevant regions.

encompass direct image space optimization approaches such
as GradViT [21], GradInv [20], and VisComp [36].

Among the GAN-based methods, DGN-AM stands out as a
pioneering approach, being one of the first to leverage GANs
for diverse explanation experiments. Unlike newer methods
that employ complex structures like StyleGAN [28], DGN-
AM utilizes a relatively straightforward convolutional neural
network architecture. Given that BlobGAN also bases its archi-
tecture on StyleGAN, we can seamlessly substitute the GAN
models in SDIC, DIEG, and E4E with our trained BlobGAN.
OCTET and SAFE, originally developed for BDD datasets,
can be directly compared with our method. Some other visu-
alization methods are designed to understand neural network
features (e.g., VisComp and DGN-AM) or to reconstruct
images from specific feature representations (e.g., GradViT
and GradInv). While these methods are not directly applicable
to our task, their optimization regularization techniques prove
useful for achieving high-quality visualization results. We
incorporate these techniques into our experimental framework
for comparison. To enable fair comparison in autonomous
driving scenarios, we use the same decision loss function
as our method for all compared methods. Furthermore, we
conduct an experiment to evaluate the effects of removing
optimization regularization and attribution guidance, denoted
as “w/o Reg” and “w/o Attr,” respectively.

Quantitative evaluations in our study still focus on two
primary metrics: similarity and effectiveness. We use the one
minus the Learned Perceptual Image Patch Similarity (LPIPS)
score [54] to measure the perceptual distance between the
visualization results and the original inputs. Similar scenarios
leading to different decisions can better assist in examining
hidden biases in autonomous driving models. Effectiveness,
on the other hand, is determined by the success rate at which
visualization explanations change decisions. Fig. 4 illustrates
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Fig. 4. Similarity (x-axis) against the rate of successful decision changing (y-
axis) for all compared methods. The most valuable visualization explanation
should be in the top-right corner.

that our method not only achieves a high similarity score
but also effectively alters the original decisions. Eliminating
attribution guidance (i.e., “w/o Attr”) slightly improves success
rates but adversely affects similarity. The absence of indirect
regularization (denoted as “w/o Reg”) leads to more visually
disordered traffic scenes, further decreasing similarity scores.

When comparing with other GAN-based methods, we ob-
serve significant variations in performance across different
approaches. For example, while the latest discrepancy map
learning hourglass module and attention fusion techniques
exhibit strong performance on facial datasets [32], they fall
short in visualizing traffic scenes, as indicated by the light blue
inverted triangle in Fig. 4. Although SAFE can achieve the
highest similarity, its approach of keeping pixel-level changes
minimal makes it difficult to alter decisions, thereby impacting
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TABLE II
QUANTITATIVE COMPARISON WITH DIFFERENT VISUALIZATION METHODS.

FID ↓ KID ↓ 1-LPIPS ↑ SSIM ↑ Time ↓

GradViT 58.385 0.085 0.546 (±0.293) 0.474 (±0.327) 4.93 (±0.31)
GradInv 64.392 0.089 0.503 (±0.367) 0.488 (±0.314) 4.75 (±0.42)
VisComp 56.227 0.077 0.554 (±0.307) 0.516 (±0.297) 5.16 (±0.35)
DGN-AM 48.793 0.073 0.592 (±0.301) 0.542 (±0.294) 6.58 (±0.57)

SDIC 31.691 0.054 0.661 (±0.247) 0.616 (±0.245) 8.42 (±0.83)
DIEG 34.425 0.059 0.635 (±0.251) 0.588 (±0.284) 8.14 (±0.74)

OCTET 54.951 0.061 0.607 (±0.302) 0.571 (±0.281) 7.53 (±0.72)
SAFE 28.453 0.059 0.796 (±0.124) 0.599 (±0.262) 6.74 (±1.13)
E4E 34.310 0.053 0.647 (±0.271) 0.591 (±0.274) 7.15 (±0.98)

w/o Reg 35.048 0.061 0.665 (±0.249) 0.593 (±0.283) 2.16+6.67 (±1.02)
w/o Attr 37.353 0.062 0.637 (±0.274) 0.584 (±0.291) 6.81 (±0.87)

Ours 24.767 0.048 0.702 (±0.224) 0.642 (±0.236) 2.16+6.83 (±0.92)

Fig. 5. Visualization results generated by different methods. Our results consistently exhibit a high similarity and effectively change decisions by modifying
small yet critical details, reflecting the key information that contributes to decision shifts in the scenario. These images are best viewed on screen.

the effectiveness of visualization explanations. Moreover, di-
rect image-space generation methods (i.e., GradViT, GradInv,
and VisComp) yield lower-quality images, all scoring below
0.6 in terms of similarity. This result shows the necessity of
utilizing sophisticated GAN architectures for our visualization
tasks.

The evaluation of similarity is multifaceted, prompting us
to select various metrics to capture different aspects of image
quality and realism. We use the LPIPS metric to measure
perceptual distance. Additionally, we integrate the Fréchet
Inception Distance (FID) [55] and Kernel Inception Distance
(KID) [56] to evaluate the statistical similarity and diversity
of the generated images compared to the inputs, and use
the Multi-Scale Structural Similarity Index (MS-SSIM) [57]
for direct comparisons in the image space. For non-statistical
metrics, we add their numerical ranges for reference. Table
II shows that our method outperforms other state-of-the-art

methods across most metrics. For SAFE, we mainly refer
to the data provided in the original paper [35]. We find
that our attribution guidance is crucial for maintaining the
proximity of visualization explanations. Directly updating all
parameters without specific guidance (i.e., w/o Attr) leads to a
significant reduction in similarity, highlighting the importance
of targeted interventions in the visualization process. Among
the comparison methods, SDIC, SAFE, and E4E are notable
for generating the most interpretable results.

The final column of Table II presents the visualization
generation time for each method, allowing for an efficiency
comparison. Our method needs an additional overhead of
approximately 2 seconds due to the attribution computation.
During the visualization optimization process, most GAN-
based generation methods exhibit similar time consumption,
typically requiring 6-8 seconds depending on scene complexity
and optimization objectives. Visualization methods that do
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(a) (b)

Fig. 6. User study results of visualization explanations.

not rely on GANs, such as GradViT, GradInv, and VisComp,
offer faster generation speeds, typically around 5 seconds. All
reported times are based on single-batch processing using a
computer equipped with an I9 13900K CPU and an NVIDIA
GeForce RTX 4090 GPU. Due to the computational com-
plexity of visualization generation, current techniques are not
capable of real-time explanation generation and are therefore
best suited for offline interpretation of model decisions.

A qualitative visual comparison of our method against the
three top-performing methods is presented in Fig. 5. Our
visualizations not only maintain high fidelity to the reference
images but also offer insightful interpretations of decision
changes within the autonomous driving model. For instance,
in the first column of Fig. 5, where the autonomous driving
decision shifts from “Forward” to “Turn Left,” our visualiza-
tion does not simply remove the leading vehicle; it reveals
a navigable path to the left. This nuanced representation
facilitates a more in-depth analysis of the scenarios that
might induce a change in the model decision. In the second
column, our method triggers a decision shift by repositioning
the leading vehicle while best preserving its shape. This
careful balance between inducing change and maintaining
visual consistency is crucial for generating meaningful and
interpretable visualizations. Both quantitative and qualitative
results confirm that our method is strong in exploring decision
shifts of autonomous driving models.

D. Visualization Evaluation User Study

Although we have used quantitative metrics to benchmark
our method against existing methods Sec. V-C, visualiza-
tion, as shown in Fig. 5, is inherently subjective. Therefore,
quantitative experiments alone are insufficient for a compre-
hensive validation of the generated explanations. To address
this, we design two progressive user studies to evaluate the
effectiveness of our visualization explanations in inducing
decision changes while preserving fidelity to the original
input. These studies involved 60 participants recruited from
three universities and a community. Of these participants, 22
are actively involved in autonomous driving research, with
9 possessing practical driving experience. The remaining 38
participants have limited familiarity with autonomous driving,
and 17 of them have driving experience.

Proximity assessment. Participants were asked to examine
20 randomly selected sets of images. Each set presented

TABLE III
QUANTITATIVE COMPARISON OF DECISION SCORE CHANGES USING

DIFFERENT LAYER SELECTIONS.

Foward Stop Turn Left Turn Right

ll 0.288 0.292 0.347 0.351
lm 0.283 0.289 0.343 0.346
lh1 0.263 0.267 0.328 0.319
lh2 0.262 0.268 0.332 0.322

(ll, lm) 0.235 0.239 0.307 0.291
(ll, lh2) 0.196 0.189 0.254 0.273
(lm, lh1) 0.219 0.218 0.269 0.281
(lm, lh2) 0.221 0.217 0.282 0.288

Ours (ll, lh1) 0.181 0.178 0.247 0.261

visualizations generated by different methods in random order,
alongside the original image and its corresponding driving
decision displayed consistently. Participants selected the three
visualizations they perceived as most closely resembling the
original input. The top three methods were assigned scores of
3, 2, and 1, respectively, while all other methods received a
score of 0. Human judgment of image similarity often diverges
significantly from numerical metrics. People tend to assess
similarity based on overall style and structural layout. For
example, SAFE produces hallucination-like artifacts in certain
samples, which are readily perceptible to the human eyes but
may not significantly impact quantitative metrics. Conversely,
E4E’s superior preservation of overall structure correlates with
its stronger performance in the user study, as shown in Fig. 6a.
Generally, user study results provide a more accurate reflection
of human perception and understanding of the visualization
explanations. For this indicator, our method outperforms all
other methods, demonstrating that our visualizations are better
aligned with human perception and facilitate human under-
standing of model decision-making.

Over optimization evaluation. We further presented par-
ticipants with the decisions resulting from the visualizations
and asked them to evaluate which visualization best helped
them locate the key information responsible for the deci-
sion shift, again allowing them to select top three methods.
This experiment requires the visualization explanations to
effectively highlight the updated regions, thereby aiding user
understanding of the reasons behind the decision change. A
higher selection percentage indicates better comprehensibility.
As shown in Fig. 6b, our method also achieved the best
performance.

E. Ablation Study of Layer Selection

In this section, we evaluate the impact of layer selection
within CLFA computation, using both attribution and visual-
ization metrics. We use different layers: for the lower layer,
we use the layer post two maxpoolings, denoted as ll; for
the middle layer, we choose the middle maxpooling layer
lm; and for the higher layers, we select the second to last
layer lh1 and the fourth to last layer lh2. To validate our
layer selection strategy, we perform attribution calculations
using both individual layers and pairs of layers. Then, we
use the change ratio score as stated in Sec. V-B to evaluation
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TABLE IV
QUANTITATIVE COMPARISON OF DIFFERENT SIMILARITY METRICS USING

VISUALIZATIONS GENERATED WITH DIFFERENT LAYER SELECTIONS.

FID ↓ KID ↓ 1-LPIPS ↑ SSIM ↑

ll 29.339 0.056 0.682 0.601
lm 30.392 0.054 0.688 0.612
lh1 28.547 0.053 0.684 0.611
lh2 28.367 0.053 0.687 0.607

(ll, lm) 26.628 0.051 0.691 0.627
(ll, lh2) 25.421 0.048 0.699 0.631
(lm, lh1) 26.397 0.049 0.692 0.634
(lm, lh2) 25.792 0.049 0.694 0.629

Ours (ll, lh1) 24.767 0.048 0.702 0.642

these attributions. The results shown in Table III demonstrate
that single-layer selection struggles to effectively accumulate
features, generally leading to suboptimal performance. Utiliz-
ing layer pairs, however, significantly improves performance.
Our final choice is (ll, lh1) as detailed in Sec. V-A. This
choice is based on the established understanding that low-level
features capture fundamental scene information, while high-
level features possess greater discriminatory power [36]. By
combining these layers, we leverage the strengths of both low-
level and high-level information, and the experiments confirm
that this integration effectively enhances the accuracy of the
attribution calculations.

We further validate our layer selection by generating visu-
alizations using attributions calculated from the different layer
combinations and subsequently evaluating their quality, as
presented in Table IV. Although the performance differences
across the various layer selections are not substantial, our
chosen layer pair consistently yields the most effective results,
enabling more precise localization of the key information
contributing to the driving decision.

F. Ablation Study of Blob Ratios

In this section, we discuss the blob ratio setting for deter-
mining critical blobs. After the computation of attributions,
we select a specific proportion of blobs, whose combined
attributions account for more than 60% of the total sum, as
discussed in Sec. V-B. This selection forms the basis for our
subsequent visualization optimization.

To enhance the interpretability of visualization explana-
tions for the decision-making process, it is important that
the explanations should exhibit two key properties: similarity
and effectiveness [50]. Similarity ensures that the explana-
tion results closely resemble the inputs, thereby accurately
revealing the critical information that influences decisions and
uncovering potential model deficiencies. Effectiveness ensures
that the explanation results have a tangible impact on the
driving decisions. For example, if the optimization goal is set
to “Stop,” then the decision for the explanation image should
shift from the original decision to “Stop.”

Specifically, the similarity of the explanation image to the
reference is quantified by using one minus LPIPS score [54],
and the effectiveness is measured by the change ratio of the
decision score values. Our objective is to achieve both high

(a) (b)

(c) (d)

Fig. 7. Evaluation of different blob ratios. We plot image similarity (x-axis)
against the ratio of decision score change (y-axis) for four distinct blob ratios
under four types of decisions: (a) Forward, (b) Stop, (c) Turn Left, and (d)
Turn Right.

similarity and substantial decision score changes. As shown in
Fig. 7, the most insightful explanations should be positioned
in the upper-right part. The closed curves are formed by
connecting the data points.

We conduct a sensitivity analysis to determine the optimal
blob ratio for generating effective visualizations. The experi-
mental results indicate that a balance between similarity and
effectiveness in altering the decision is best achieved when the
blob ratio is set at 60%, particularly noticeable in “Forward”
and “Stop” decisions. These decisions appear more susceptible
to alteration through visualization explanations. We hypothe-
size that this sensitivity may stem from an imbalance in the
distribution of decision labels within the BDD dataset, which
contains significantly more “Forward” and “Stop” examples.
Furthermore, “Forward” and “Stop” decisions often correlate
with more readily discernible objects, such as the distance
to the preceding vehicle, the state of brake lights, and traffic
signals, which directly influence the decision. Conversely,
decisions involving turning left or right typically entail more
complex scene changes, making it more challenging to gen-
erate effective visualizations that both maintain fidelity to the
original input and induce a decision change.

To further explore the impact of the blob ratio, we change
this parameter across a range of values (i.e., 55%, 60%, 65%,
and 70%) and evaluate the resulting visualizations in terms
of both similarity and effectiveness. As shown in Fig. 7, the
results confirm that a 60% blob ratio consistently provides
the best trade-off between these two competing metrics across
different decision types. Higher blob ratios tend to prioritize
similarity at the expense of effectiveness, while lower ratios
prioritize effectiveness. Based on these findings, we adopted
a 60% blob ratio for our experiments.
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TABLE V
QUANTITATIVE COMPARISON OF SIMILARITY ACROSS DIFFERENT

REGULARIZATIONS.

FID ↓ KID ↓ 1-LPIPS ↑ SSIM ↑

w/ TV 27.483 0.055 0.672 0.608
w/ BN 33.562 0.058 0.636 0.592

w/ TV & BN 26.358 0.054 0.679 0.611
w/ jit 29.427 0.055 0.682 0.627

w/ Kuwa-5 29.103 0.055 0.687 0.628
w/ Kuwa-7 27.824 0.054 0.691 0.633
w/ Kuwa-9 28.628 0.054 0.689 0.630

w/ jit & Kuwa (Ours) 24.767 0.048 0.702 0.642

G. Ablation Study of Regularization Techniques

In this section, we compare our regularization method with
a set of classic image generation regularization techniques,
namely total variation (TV) and batch normalization (BN)
regularization. Such a combination has become standard in
many visualization methods [20], [21], [58]. Compared to
these techniques, the main advantage of our proposal is its
capacity to integrate various image processing methods with-
out introducing additional hyperparameters. This advantage
is particularly useful when there are large variations in the
range of the objective function, as it avoids the need to
balance parameters across multiple loss terms. Furthermore,
we use image quality assessment metrics to compare different
regularization methods, as shown in Table V.

As an ablation reference, we use only one image processing
regularization in our method, denoted as “w/ jit” and “w/
Kuwa.” We also test various sizes for Kuwahara filter (i.e.,
5, 7, and 9) and determine that a size of 7 provides optimal
performance for our model. This setting is used as the default
in our experiments. It is important to note, however, that
this filter size should be adjusted based on the input size
of the model to achieve the best results. Jitter processing,
which introduces random perturbations during optimization,
primarily impacts image sharpness. The Kuwahara filter, on
the other hand, primarily affects image texture. Applying jitter
in isolation leads to a more noticeable decrease in image
quality compared to using the Kuwahara filter alone. The
experimental results demonstrate that combining both regu-
larization techniques yields the highest quality visualizations.

H. Bias Identification via Visualization Explanations

In this section, we use visualization explanations to reveal
biases within the autonomous driving model. Previous exper-
iments have shown that our visualizations satisfy the metrics
of the explanatory task. Leveraging the high-quality results
obtained, we delve deeper into evaluating how effectively these
explanations can identify biases that trigger decision shifts
within the model. To this end, we conducted a user study
involving 50 participants recruited from three universities. Of
these, 19 are actively engaged in autonomous driving research,
and 9 of them have practical driving experience. The other 31
participants, less familiar with autonomous driving, include 11
who have driving experience. This varied mix of participants
provides a broad perspective, helping us better understand

how different levels of familiarity with autonomous driving
influence decision-making perceptions.

Participants were tasked with reviewing approximately 100
randomly generated pairs of explanations, each composed
of two images corresponding to different decisions, with
examples shown in Fig. 8 and 9. The original inputs are
shown above, and the visualizations that change the decisions
are shown below. Participants were asked to pinpoint which
explanations seemed inconsistent with their intuition and to
explain their reasoning.

Through this interactive format, a significant number of par-
ticipants highlighted two notable biases in the model trained
on the BDD dataset. First, variations in tail lights often change
the model’s decision. As shown in Fig. 8, when the tail
lights of the car ahead are off, the model typically opts to
continue moving forward, disregarding the broader context. In
contrast, if the tail lights are on, the model tends to decide
to stop. From the feedback collected, we analyze how this
dependence on the state of the tail lights affects the quality
and safety of decisions made by the model. Primarily, if the
model makes a braking decision solely on the tail lights’ status,
it might overlook other critical environmental and contextual
information such as the actual speed of the car ahead, the
flow of traffic, and road conditions. This over-reliance can lead
to delayed responses in urgent scenarios where tail lights are
not activated, or to exaggerated reactions during frequent but
unnecessary tail light flashes. Moreover, this decision-making
process may prove inadequate under conditions where tail
lights are non-standard, malfunctioning, or not clearly visible
due to unusual lighting, potentially causing inaccurate system
responses and increasing accident risks.

The second bias identified in the autonomous driving model
is about traffic lights. Participants observed that the model
is frequently influenced by objects resembling traffic signals
during its decision-making process. As shown in Fig. 9, even
minor alterations in the scene, such as the emergence of a
traffic light or a similar-looking light source, can directly
change the model’s decision. While this high sensitivity to
traffic lights may appear beneficial, e.g., prompting the vehicle
to stop when necessary, it also introduces uncontrollable risks,
particularly in complex urban scenes. For example, if the light
reflecting off a building’s glass facade under certain conditions
mimics traffic signal colors, or if certain streetlights mirror
the brightness and color of traffic signals, the model could
erroneously interpret these reflections or light sources as traffic
signals and decide to stop.

Our visualization explanations serve as a tool that enables
developers and users to identify such biases within the model,
thereby enhancing the predictability and consistency of its
decisions.

VI. CONCLUSION

In this study, we introduce a novel attribution-guided op-
timization visualization approach designed to explore the
reasons behind decision shifts in autonomous driving models.
Our method focuses on identifying and updating only the key
influential objects relevant to the decision, which facilitates



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 8, AUGUST 2021 12

Fig. 8. Samples of decision-making bias triggered by tail lights.

Fig. 9. Samples of decision-making bias triggered by traffic lights.

Fig. 10. Visualizations generated with samples from the KITTI and HDD
datasets.

the creation of high-quality, decision-inspired visualizations.
This achievement is enabled by our proposed cumulative
layer fusion attribution method and an indirect regularization
technique. Our approach has demonstrated superior results
compared to previous works across various evaluations. We
believe that this work helps to facilitate the exploration of
the decision-making process and enhance the analysis of
autonomous driving systems in real-world scenarios.

Despite these advantages, our proposal has certain limita-
tions. First, the blob generation model is trained solely on the
BDD dataset, and its capacity on out-of-distribution data is
unstable. As illustrated in Fig. 10, we conduct tests on both
the KITTI [59] and HDD [60] datasets. Our findings reveal that
the generative model struggles to reconstruct objects it has not
encountered during training. This limitation is evident in the
first two columns, where the generated visualizations exhibit
unusual artifacts. However, in more common scenarios, as
depicted in the last column, the results are more plausible. This
highlights the inherent challenges and potential unreliability of
generative models when applied to out-of-distribution samples.
Second, during our attribution computation, we accumulate
multi-layer information, choosing a combination of one lower
and one higher layer, which has proven effective and nearly
satisfies the “completeness” axiom. However, there are other
layer pairs that could fulfill these criteria. Efficient selection
methods other than grid testing remain an area for future

research. Another empirical choice is the Kuwahara filter.
We find that most edge-preserving filters can enhance the
quality of the visualization results, yet identifying an optimal
filter efficiently still poses an open question. These limitations
highlight potential avenues for future research, which we
intend to explore.
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