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Abstract In this paper, we introduce GarTrans, a novel
graph-learning based method for the task of garment
animation. It emphasizes efficiently rendering realistic
deformation effects. GarTrans goes beyond existing models
by providing improved generalization capabilities, along
with the ability to capture fine-scale garment dynamics and
details. Our approach begins by constructing a garment
graph that comprehensively encodes the dynamic state of
the garment, taking into account its shape and topology, as
well as the underlying body shape and corresponding motion.
We have also designed a structure-augmented transformer
(SAT) capable of processing the node information and edges
within the graph, enabling the generation of deformation
details that are contextually informed. Our model employs a
unified optimization scheme that incorporates both supervised
and unsupervised loss functions, enabling a robust approach
capable of realistically mimicking the behavior of intricate
garments. Experimental evaluations show that our method
surpasses the existing state-of-the-art in terms of both
functional capabilities and visual fidelity, advancing the field
of garment animation.
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1 Introduction
Efficient and realistic simulation of garments is indispensable
to human modeling in industries such as gaming, film,
e-commerce, and digital twins. In the field of computer
graphics, the classic approach to modeling clothing behavior
is physics-based simulation (PBS) [1–3]. While it generates
high-quality results, the process is not only challenging to
manage, requiring the specialist expertise of an animator, but
it also incurs significantly high computational costs, making
it unsuitable for interactive applications. Seeking efficiency
in simulation, alternative techniques such as linear blend
skinning (LBS) [4] or pose space deformation [5] are often
employed. These methods operate under the assumption that
the garment will closely follow body movement. While this
speeds up the process, it does so at the cost of deformation
realism.

Faced with the challenge of balancing simulation efficiency
and quality, researchers are exploring learning-based solutions
[6–8]. A prevalent approach among existing methods involves
leveraging network structures such as multilayer perceptrons
(MLPs) [9, 10] to map static garment deformations from
input features like shape, pose, and clothing style. When
dealing with loose-fitting garments, and aiming to produce
dynamic effects, enhancements like gated recurrent units
(GRUs) have been integrated to handle temporal actions
[11, 12]. Nonetheless, these techniques often hit a common
roadblock: they have difficulties generalizing to unseen
garments and mesh topologies. While some unsupervised
methods [13, 14] seem promising in minimizing data training
time, their effectiveness in practical applications, particularly
in scenarios encompassing a wide variety of garments,
remains to be conclusively proven. The need for repeated
retraining of models to cater to various garment types
underscores the inefficiency of existing solutions. Even the
latest research [15] efforts to enhance model generalizability
using hierarchical graphs struggle with efficiency due to the
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complexity of parallel sequence processing, resulting in an
underutilization of GPU parallel resources.

The field urgently needs an efficient, comprehensive model
capable of adeptly generating highly-detailed, physically
accurate deformations for a diverse range of garments,
inherently accounting for dynamic states of movements.
To this end, we propose a novel approach, GarTrans, for
predicting garment deformations using a transformer-based
architecture. This approach is designed to understand the
behavior of garments in line with the laws of physics.
Furthermore, it guarantees that the resulting deformations
are controllable and can be accurately guided by examples
within the seen data. Fig. 1 illustrates the two-step pipeline of
our method. Initially, we formulate a dynamic-aware graph
construction module. This module generates garment graphs
that implicitly encode information about individual garments,
the underlying body, and motion states. Subsequently, we
leverage this dynamic graph representation in a dynamic detail
deformation module. This module is equipped with several
graph transformers, which are responsible for producing the
final garment deformation.
Specifically, our technical contributions are as follows:
• To address the challenge of the model’s generalization
capabilities under the variation of multiple deformation
factors, we introduce a dynamic-aware graph
construction module. This module constructs a
comprehensive and unified representation that captures
the inherent properties of the garment, the shape of
the body, and the associated motion states. Through
the integration of pose histories within the graph
structure, our approach achieves temporal coherence
of deformations, thereby ensuring realistic dynamic
behavior of the garment.

• To gain a sophisticated understanding of how garment
details behave in response to changes in body movement,
we extend the graph transformer by proposing a
dedicated pathway for mesh structural information. By
allowing edge features to participate in the propagation,
our approach maintains a ‘live’ state of the spatial
relationships. This enables mesh nodes to more
effectively perceive contextual details and facilitates
dynamic interactions between information within the
mesh. For garment deformation tasks, such structural
augmentation contributes to the accurate prediction of
details.

• To refine the fidelity of garment deformation predictions,
we propose a novel optimization scheme that combines
supervised and unsupervised loss functions. This

hybrid approach harnesses the precision of supervised
learning to meticulously guide the deformation process.
Concurrently, it employs unsupervised loss functions,
which encompass key physical qualities, to promote
realistic garment behavior in simulations. This duality
ensures that our network is not merely imitating specific
instances but is learning the underlying physics and
fabric characteristics, resulting in a robust model that
excels in both precision and realism for the intricate
garment deformation task.

Overall, our method provides a holistic solution capable of
learning about garments with a reasonable sense of dynamism
and detail using a unified optimization strategy.
Extensive experiments confirm the efficacy of our

technologies and demonstrate its superiority to state-of-the-art
learning-based approaches.

2 Related work
Existing work on garment deformation can be divided
into two main categories: physics-based simulations and
learning-based models.
Physics-based simulation (PBS) relies on the principles

of physics to authentically reproduce the behavior and
deformation of fabric under various forces and conditions.
This technique is based on fundamental concepts such asmass,
elasticity, gravity, and friction to create dynamic and realistic
garment simulations. Numerous research avenues, including
time integration [16], differentiable physics simulators
[1, 17, 18], collision detection [19–21], and response [22–24],
have been explored in this field. Despite the remarkable
realism thesemethods provide, their substantial computational
demands often limit their usability in interactive settings. To
enhance simulation efficiency, several studies have focused
on various facets, including incorporating position-based
dynamics [25–27], leveraging parallel computation using
GPUs [28–30], and refining low-resolution simulations by
adding detailed wrinkles [31–33]. Another challenge in PBS
is the tuning of simulation parameters, a process that demands
both time and professional expertise. While researchers
have introduced parameter inference methods to address this
issue, they have yet to overcome the challenge of extending
their effectiveness beyond controlled settings and ensuring
consistent simulation outcomes across a variety of fabric
types and dynamic conditions, which limits their practical
applicability to diverse real-world scenarios.
Learning-based models have gained popularity for their

ability to leverage existing machine learning techniques
to learn and predict complicated garment behaviors, often
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Fig. 1 Overview of our method. Inputs to the model include the garment and body in rest pose, alongside the continuous motion. GarTrans
employs a dynamic graph construction module and a subsequent dynamic detail deformation generation module to process these inputs
end-to-end, resulting in the output of final garment deformations that encompass dynamic behavior and rich details.

achieving higher efficiency and scalability than traditional
physics-based approaches. Drawing on the foundational pose
space deformation method [5], which is primarily used to
simulate the deformation of animated characters, researchers
have established mappings from variables such as body shape
[34], garment size [35], fit parameters [36], or pose [10, 37],
to the corresponding garment deformations. These mappings
allow for automatic simulation of how garments react to
different factors. To achieve realistic garment rendering with
details, recent studies [38, 39] have adopted transformer-based
networks for the task of garment deformation estimation.
Despite their advances, these methods are restricted to
garments with unchanging topologies. On the other hand,
approaches in [38, 40] require the generation of a coarse mesh,
which increases the time and computational effort needed.
More recently, drawing inspiration from physics-based
deformation models, authors have shifted their approaches
towards unsupervised learning [41, 42], transforming the
traditionally frame-by-frame implicit integrator problem into
an optimization problem [13, 14]. These methods reduce the
time spent on dataset preparation significantly, but the lack of
ground truth means precise control over the training process
is hard to achieve, and results are difficult to evaluate directly
and quantitatively.
Graph neural networks (GNNs) have been successful in

3D data processing in recent years, with many approaches
exploring the use of GNNs to solve garment mesh deformation
tasks. The pioneering work in [43] introduced an innovative
graph-learning method for auto skin binding of game

characters, capable of predicting the skinning weights of
complex skeletons using a unifiedmodel. This groundbreaking
approach inspired a series of subsequent investigations
[44–47], where different GNNs were used to learn skinning
weights and character blend shapes. Researchers keen on
replicating garment folds and wrinkles have adopted diverse
architectures, such as the PointNet-based framework [48],
graph attention networks (GATs) with output decomposition
[36], and UNet-like GNNs [34]. These methodologies
primarily mimic garment behavior on parametric human
bodies based on SMPL. Extending beyond SMPL bodies,
the study in [49] successfully handles non-SMPL objects
and rigid bodies. However, the constraint remains that a
trained model can only be applied to a fixed garment mesh
topology. While these techniques are proficient in generating
credible results for tight-fitting garments and static poses, they
struggle with loose-fitting garments and dynamic effects. The
introduction of temporal information as key data for the model
to learn has been proposed as a solution to these challenges
[11, 15, 50, 51]. The challenge persists in generating clear
details while concurrently achieving dynamics, using a
model that is generalizable and possesses robust inference
capabilities. Our proposal extends beyond the conventional
focus on classical GNNs, exploring the potential of graph
transformers in garment deformation tasks.
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3 Methodology
3.1 Neural simulation for garments

3D garment deformation can be regarded as a shift in
the state of the garment mesh, wherein the intricate
dependencies between each node and its surroundings
naturally align with the strengths of GNNs. Furthermore,
the topological agnosticism of these neural networks is
particularly advantageous as it facilitates the application of
learned models to a diverse array of garment types, regardless
of their structural form. Despite the promise, as mentioned
in many studies [10, 15, 36], straightforward application
of this concept to neural cloth simulation tends to produce
unsatisfactory results. To harness the full potential of GNNs,
we suggest a novel approach in constructing graphs and
refining the graph processing workflow, specifically tailored
to the task of garment mesh deformation.
Our process begins by constructing a rest pose

garment-body mesh graph. For the target garment T with
N vertices, we create a base graph Ḡ, with each vertex
described by a feature vector x̄ giving its spatial position,
normal vector, and distances to skeletal joints, while edges
represent vertex interconnections. This graph initially passes
through an original transformer, which yields a transformed
graph endowed with features x̄[1] ∈ RN×d (where d is
the number of feature channels). Concurrently, we compute
the affinity matrix A ∈ RN×N for the garment, capturing
geodesic distances between the N vertices. Applying the
Nyström method to A enables us to approximate its
eigenvectors u ∈ RZ×Z , with Z � N , thus simplifying the
eigendecomposition. These eigenvectors are then processed
through fully connected layers to generate features u[1] ∈
R1×d. Subsequently, we perform element-wise multiplication
of these features with the features of the transformed mesh
graph: x′ = x̄[1] � u[1]. This operation yields an enhanced
graph characterized by the integrated features x′. This
integration serves two primary purposes. Firstly, it employs the
fully connected layers as a selective filter, which emphasizes
essential geodesic features while downplaying less critical
ones, thereby endowing the model with a contextualized
understanding of the garment mesh that enhances deformation
precision. Secondly, it offers a comprehensive view that
merges local vertex detail with broader structural patterns.
Such an operation enhances the ability of the model to
internalize the inherent geometry, which is particularly
beneficial for adapting to changes in mesh topology.
To further infuse the model with body-specific features,

high-dimensional features are extracted from the SMPL

body model, parameterized by the shape coefficients β. This
process, conducted through fully connected layers, generates
features b[1] ∈ Rd×S that quantify the distances from each
vertex on the body mesh to each skeletal joint, where S
represents the total number of joints. These extracted body
features are then combined with the garment graph features
x′ through a multiplication operation, forming a unified static
graph that represents the garment-body relationship. This
process is described by x′′ = x′ ⊗ b[1], where x′′ represents
the resulting feature-rich graph representation.
In processing dynamic information, we analyze pose

histories Θt using a GRU to extract motion features Θt[1] ∈
R1×S that are then integrated with the static garment graph:
x′′′ = x′′ �Θt[1]. This fusion facilitates the creation of the
skinning weightsWt and the blend shapeBt, where the blend
shape is relatively complicated, and we employ additional
transformers to generate it. The dynamic-aware garment mesh
M t,c can be defined as:

M t,c(T, β,Θ) = W (T t(T, β,Θt), J,Wt(T, β,Θt)), (1)

T t(T, β,Θt) = T +Bt(T, β,Θt), (2)

where W (·) is the skinning function which deforms the
unposed T t(·) using the skinning weightsWt(·) relative to
joint locations J. T t is the result of the template garment mesh
T combined with the time-specific blend shape Bt. Upon
derivingM t,c, we construct its corresponding dynamic-aware
graph, embedding vertex features x and edge features e.
Vertex features incorporate the velocities between the previous
and current frames, vertex normal of the current frame, and
distances to all joints. Edge features include the lengths and
normal of the edges.
Having constructed the dynamic-aware graph, our goal

is to generate garment deformations with dynamic details.
To achieve this, we leverage the capabilities of graph
transformers, which are adept at handling the intricate
dependencies and features within the graph data structure.
Building on this foundation, we further enhance the model by
our SAT design. The advanced model incorporates additional
structural information into the transformer framework,
allowing for a deeper understanding of the topology of the
garment. Consequently, our model can precisely capture
the way garments fold, stretch, and fit around the moving
body, reflecting the subtle dynamics and wrinkles that
conventional graph transformers may overlook. The SAT
is engineered to output the acceleration of nodes in their
current state. Integrating this calculated acceleration with the
coarse garment meshM t,c results in a garment deformation
M t,d that captures dynamic details effectively. In essence, our
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method is characterized by an information transfer process
within a graph structure, with the processing conducted
by the proposed graph-based transformer. Unlike systems
constrained to fixed-size input vectors, this graph-based
approach aligns with the demonstrated flexibility of other
GNN-based simulations [15, 34, 41, 44], which do not
necessitate predefined topology.

3.2 Graph transformer preliminaries

In this section, we provide a brief overview of the graph
transformer structure [52, 53]. This structure can be thought
of as a graph-based version of the original architecture [54].
The transformer uses a self-attention mechanism to recognize
and encode the unique information found at different positions
of graph nodes, creating output features for each location,
which can be mathematically represented as:

qi = Wqx
[`]
i + bq,

kj = Wkx
[`]
j + bk,

hij =
qTi kj√
da

,

αij =
exp(hij)∑

u∈Ni
exp(hiu)

,

(3)

where q and k represents the queries and keys formed
by learned linear transformations of the vertex features
x ∈ RN×d within a transformer layer. x[`] stands for the
vertex features in layer `. W and b are used to represent
corresponding weights and bias in a linear transformation,
respectively. da is the number of feature channels, Ni is the
first-order-neighbor vertex set of vertex i, and α denotes the
softmax attention scores, which are derived from the scaled
dot product of queries and keys, passed through a softmax
function for normalization. Although da and d can be set
independently, in line with conventional practice, we set both
to the same value in our method. The features of the following
layer can then be generated by multiplying the values by these
attention scores as follows:

vj = Wvx
[`]
j + bv,

x̂
[`+1]
i =

∑
j∈Ni

αijvj ,

x
[`+1]
i = Wox̂

[`+1]
i + x

[`]
i ,

(4)

where v represents the values within a transformer block, and
x[`+1] denotes the vertex features of the following layer. In
the multi-headed case, the mid-level vertex features x̂[`+1],
corresponding to different heads, are either averaged or
concatenated prior to the linear transformation.

3.3 Structure-augmented transformer (SAT)

The connectivity between vertices, stored in edges, is just
as important as vertex-level features in simulating clothing
forces. Drawing inspiration from a previous study [53] that
introduced edge processing into graph transformers, we
incorporate garment structure information into the attention
calculation and feature aggregation. This extends the original
transformer architecture, taking advantage of the transformer’s
ideal permutation equivariance properties for processing
graph data: the layer is invariant to permutations of vertices in
a graph, provided the edges remain consistent. This property
makes transformers suitable for concurrently processing
vertex and edge features, given that graphs themselves are
invariant to node ordering, provided the connectivity remains
consistent. For our case, the initial edge features e0 are defined
using displacements and directions of two adjacent frames,
and then are forwarded into transformer layers to generate
the `-th edge features e[`] ∈ RN×N×de . Here,N denotes the
number of vertices, and de is the number of channels of edge
features. The edge features are propagated across each layer,
all the way up to the network output.
As given by Eqs. (3) and (4), the attention scores can be

considered a normalized adjacency matrix provided by a
weighted complete graph. These scores determine how the
values v are aggregated to form subsequent layer features.
Unlike the input graph which is manually defined, the graph
features in intermediate layers are adaptively formed by the
self-attention mechanism. However, the original transformer
does not offer a directmethod to incorporate the garment graph
structure into feature propagation. Moreover, these hidden
graph features are immediately collapsed when aggregation is
finished. To address this challenge, we allow the edge features
to participate in the attention calculation as feature gating. The
hidden edge features e are linearly transformed and scaled by
the sigmoid function σ(·), enabling the edge information to
gate the attention scores and thereby regulate the information
flow between vertices. Our attention calculation is as follows:

pij = Wpe
[`]
ij + bp,

qij = Wqe
[`]
ij + bq,

hij =
qTi kj√
da

σ (pij) ,

αij =
exp(hij)∑

u∈Ni
exp(hiu)

,

(5)

where p and q are the hidden edge features formed by learned
linear transformations of the edge features e. For aggregation,
we enhance the representation of the graph structure by
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combining the values v and edge features q as follows:

x̂
[`+1]
i =

∑
j∈Ni

αij (vj + qij) ,

x
[`+1]
i = Wox̂

[`+1]
i + x

[`]
i ,

e
[`+1]
ij = Wehij + e

[`]
ij ,

(6)

where v is computed in the same way as in the original
definition. To change the number of channels, we also add a
linear transformation on the x`

i in a residual connection. The
integration of edge features presents a practical controlling
capacity for the information spread among vertices, leading
to better and faster convergence during training. To ensure
the network capitalizes on the introduced connectivity, we
also randomly add −∞ to the softmax during training to
induce a small probability for attention masking. Typically,
the output is processed by a subsequent LayerNorm and
feed-forward module [53]. In practice, we replace this module
by straightforwardELUactivation: wefind that this adjustment
neither hinders the results nor affects training, but it speeds
up inferencing.

3.4 Unified deformation network optimization

Our optimization strategy comprises both supervised and
unsupervised components. Differing from purely supervised
or unsupervised methods, we integrate ground-truth-based
supervised losses and physics-informed unsupervised losses
to achieve unified optimization for the garment deformation
network. Our loss terms are borrowed from multiple previous
studies [13, 14, 41, 48, 55], with certain modifications to suit
our unified training strategy.
We use vertex position [41], edge length, and norm angle

[48] for the supervised loss terms:

Lvert = kv
1

N

N∑
i

‖pi − pGTi ‖2, (7)

Ledge = ke‖E −EGT‖22, (8)

Lnorm = kn
1

N

N∑
i

(1− nT
i n

GT
i ), (9)

where kv, ke, and kn are hyperparameters for balancing
these losses, respectively. p denotes the predicted vertex
positions.E denotes edge lengths in the deformed garment (to
distinguish them from edge features in the previous section,
we use a capital E here). n denotes vertex normals. The
superscript GT indicates ground truth data.
Building on the supervised losses, we further

incorporate physics-informed unsupervised losses as auxiliary
components. This strategy is useful for training a dataset with
a wide variety of garments and complex motions, and can

enhance the network’s ability to generalize to unseen garments
or poses. Specifically, we include collisions [13], gravity [14],
stretch forces, and shearing forces [55] in our losses as follows:

Lcollision = kc

N∑
i

|min (s(pi)− ε, 0)| , (10)

Lgravity = −kg
N∑
i

mip
T
i g, (11)

where kc, kg, ks, and kh are hyperparameters for balancing
unsupervised losses. The function s(·) calculates the signed
distance from a garment vertex to its corresponding body
mesh. ε is a collision threshold value used to increase
robustness.mi represents the vertex mass, which is computed
from vertex area and fabric surface density. g = [0, 0,−9.8]

denotes gravitational acceleration. To better simulate the cloth
model, stretch and shearing forces are used as follows:

Lstretch = ks

NF∑
i

ai (‖W u
i ‖2 − 1)

2
+ ai(‖W v

i ‖2 − 1)2,

(12)

Lshear = kh

NF∑
i

ai (W u
i W

v
i )

2
, (13)

(W uW v) =
(
∆p1 ∆p2

)(∆u1 ∆u2

∆v1 ∆v2

)−1
, (14)

where ai is the i-th triangle’s area in uv coordinates and NF

is the number of faces. For Lstretch and Lshear, let us first
consider a face of the garment mesh, indexed by vertex i, j, k.
We then define∆p1 = pj−pi and∆p2 = pk−pi. Similarly,
we set ∆u1 = uj−ui, ∆u2 = uk−ui, and the same applies
to ∆v1,∆v2. The vertex position pi changes in world space,
and the fixed plane coordinate is represented as (ui,vi). As
in physical simulations, these losses can effectively regulate
stretch anisotropically in deformation generation.
During training, we initially fine-tune the network with

supervised losses to ensure it learns the fundamental
deformations according to the ground truth. As the predictions
become increasingly accurate and the rate of improvement
plateaus, we transition to unsupervised learning to polish
the performance of the model. Details of the training setup
are outlined in Sec. 4.1. The proposed unified optimization
strategy helps us to mitigate the issues associated with purely
supervised learning, such as the lack of physical consistency,
as well as the substantial deviation toward ground truth data
found in purely unsupervised learning. It is important to note
that minor deviations from the ground truth do not undermine
the efficacy of the method. In real-world applications, ground
truth data is often unavailable, and the perceived quality of
deformations is paramount. Our method allows for a better
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balance between accuracy and realism, bridging the gap
between theoretical models and practical utility.

4 Experiments
4.1 Experimental setup

To train our network, we first amassed a garment dataset that
includes various garment types. These were collected from the
CLOTH3D dataset and draped over SMPL bodies of differing
shapes. To animate these garments, we extracted motion
sequences from the CMU Mocap dataset and CLOTH3D,
with the frame rate set to 30. For garment simulation, we
used the physics model within Blender, using silk-like fabric
settings. The training set comprises approximately 50,000
poses, each associated with 50 garments and three different
body shapes. The body shapes were deliberately sampled
within the SMPL parameter domains, primarily the first
body shape parameter, corresponding to thin, regular, and fat
respectively. Our validation dataset comprises 5 body-garment
pairs with 2,500 poses. The test dataset includes around 5,000
poses, associated with 15 different garments draped over
randomly-generated bodies.
Our network consists of two distinct modules: (i) the

dynamic-aware graph construction module, and (ii) the
dynamic detail deformation generation module.

In the graph construction module, rest-pose garment-body
information was initially processed through several
fully-connected (FC) layers and transformer layers. The FC
layers for garment processing contain [128, 128, 128] hidden
channels and utilize tanh activation. The transformer layers
dedicated to rest-pose garment graph processing contain
[64, 64, 128] hidden channels and four heads, also utilizing
tanh activation. The input graph was composed of vertices,
normals, and distances to body joints. The FC layers for body
processing contained [512, 256, 128] hidden channels and
used tanh activation. The input body feature was generated
using distances between body vertices and body joints. We
used a two-layer gate recurrent unit (GRU) with 128 hidden
channels to process motion sequences, and fused dynamic
encodings with the processed rest-pose information.

The fused features, further processed by a softmax function,
were used as skinning weights. The fused features forwarded
into additional transformer layers were used to generate blend
shapes. These transformer layers contained [32, 32, 32, 3]
hidden channels and four heads, with ELU activation utilized
for all except the output. The outputs were used to construct
the dynamic-aware graph, which consists of two types of
features: vertex- and edge-level features. The vertex-level
features included the velocity between the current and previous

frames, the vertex normal, and the distances from a vertex to
body joints. The edge-level features included the length of an
edge and the direction of two vertices of an edge.
Moving to the dynamic detail deformation generation

module, we used six SATs with [32, 64, 64, 64, 32, 3] hidden
channels and four heads in series to process the dynamic-aware
graph. We chose ELU activation for SATs based on empirical
observation that an activation with a negative saturation
region has a more stable effect on acceleration prediction. For
the intermediate SAT layers where the number of channels
changes, we introduced an additional linear transformation
on the residual connection to adjust the number of hidden
features. The predicted accelerations were generated by
averaging the final four-head results. Predicting acceleration,
an idea inspired by [15], is advantageous in this context due
to its relative nature, effectively circumventing the need for
direct prediction of the absolute position of the deformation
result.
For parameter initialization, we used the geometric

initialization method from [56] for the linear layers.
Meanwhile, the parameters within the GRU and Transformers
were initialized using the Kaiming initialization method [57].
Given that we integrate multiple loss terms for our

network’s efficacy, we used a progressive training mode
to ensure stable convergence. Initially, we updated the
parameters solely using the supervised losses, including
Lvert, Ledge, and Lnorm. Once the vertex error reduction
rate fell below 3% within 50 epochs, we activated Lcollision

and Lgravity, while scaling the supervised losses by a
factor of 0.05. Upon stabilization of collision error, we
froze the rest-pose processing submodule and activated the
remaining losses, Lstretch and Lshear. The hyperparameters
for supervised losses kv , ke, and kn were set to 100, 15, and
50, respectively. The hyperparameters for the unsupervised
losses kc, kg, ks, and kh were set to 1.5, 0.1, 5, and 2,
respectively. We employed the Adamax optimizer [58], with
an initial learning rate of .003, and applied cosine annealing
to decay the learning rate. Network training was conducted
on two servers, one equipped with two nVIDIA RTX A6000
GPUs and the other with two H800 GPUs.

For testing, we utilized a computer with an Intel i9 13900K
CPU and an nVIDIA GeForce RTX 4090 GPU. Our method
achieved inference speeds of about 29ms per frame for
garments with an average vertex count of 10K. For garments
with the highest vertex count in our dataset, about 14K
vertices, the inference time was around 33ms per frame.
Although an increase in vertex count should theoretically have
only a small impact on runtime, practical performance can be
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Fig. 2 Qualitative comparison of garment deformations with and without edge processing. Models that incorporate structural information
can precisely simulate garment deformation, resulting in more vivid and realistic outcomes.

Fig. 3 Qualitative comparison of garment deformations with different edge processing strategies. Our method yields more refined and
satisfactory details than alternative approaches.
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compromised by several factors. Specific characteristics of
CUDA, cuDNN, and PyTorch versions used, such as inefficient
memory management and suboptimal kernel optimizations,
may extend computation times. Additionally, performance
may be impacted by uneven resource allocation during GPU
parallel processing, especially when computational tasks
are not uniformly distributed across cores. Despite this, our
approach consistently maintains high inference speeds, and
supports batch processing, effortlessly meeting real-time
requirements.

4.2 Evaluation
4.2.1 Structure-augmented transformer
To demonstrate the effectiveness of the proposed SAT
module, we investigated the impact of integrating edge
information within the transformer framework. Fig. 2 presents
a comparative analysis of garment deformation outcomes
for our method with edge processing, and the original
graph transformer approach without edge processing. In
the top row, garments lacking edge processing show a loss
of critical structural constraints, leading to deformations
that diverge from the natural folds of clothing. Notably,
artifacts predominantly arise near the body joints, which
are crucial interaction points between the garment and body.
Without edge processing, themodelmay inaccurately simulate
movements and bending at these joints, resulting in artifacts
when the fabric should exhibit stretch or compression. In
contrast, the SAT leverages the mesh structural information
provided by the edges to achieve garment deformations
showing more natural and realistic results.
Additionally, we conducted a validation of the impact of

various edge processing techniques on the visual appearance
of garments. Fig. 3 compares three strategies: the approach
without edge gating as in [53], the use of a structure-aware
transformer architecture [59], and our proposed method.
These strategies were tested across a range of representative
garments subjected to various bodies and movements. When
edge gating was absent, the model could fail to differentiate
between structurally critical and non-critical edge interactions,
often glossing over the intricate details that contribute
to realistic garment appearance, leading to less detailed
output. The structure-aware transformer, while showing
some improvement, also fell short in certain areas. Despite
its general effectiveness in graph representation learning,
it appears to lack the specificity required for accurately
simulating the complex behaviors of garment deformation.
This was evident in its handling of the trouser part of the
jumpsuits and the right sleeve portions of the second and

third blue dresses, where fine details were not fully realized.
In contrast, our proposed method benefits from the our edge
processing that allows for a more detailed representation of
the context-dependent behaviors of garments, resulting in a
visibly superior level of detail.

4.2.2 Network optimization

To assess our unified network optimization strategy for
garment deformation, we conducted experiments by excluding
the unsupervised loss components; results are presented in
Fig. 4. Specifically, we removed stretch and shearing losses
while maintaining collision and gravity losses. (Omitting
collision and gravity losses produced many collisions and
yielded garment behaviors that grossly violated physical laws,
so these losses were retained to ensure basic physical realism).
The displayed outcomes indicate that our network was able to
preserve the general form of garments despite the absence of
stretch and shearing losses, showing its inherent robustness.
Nonetheless, garments appeared unnaturally rigid and lacked
high-frequency details without these losses, compromising
the quality of deformation, especially for loose garments like
dresses. This highlights the important role of stretch and
shearing losses in capturing the detailed behavior of fabric
and achieving realistic garment simulations. Conversely,
when we experimented with removing the supervised loss
and relied solely on the unsupervised loss, this led to
non-convergence of the network, preventing the emergence
of viable deformation results. Supervised loss is critical
for aligning network predictions with precise ground truth
data, as necessary for complex deformation tasks. Without
it, the network lacks the necessary guidance to capture
the intricacies of garment behavior. This experimentation
highlights the complementary interplay between supervised
and unsupervised losses within our optimization framework.
The combination of these losses is indispensable; the
supervised loss directs the learning progress towards accurate
deformation, while the unsupervised loss upholds the physical
realism of the deformations. Therefore, their combination is
crucial for the network to yield simulations that are not only
stable and convergent but also visually convincing.

4.2.3 Quantitative evaluation

Correspondingly, we also quantitatively evaluated the
predicted results from various transformer implementations
and loss optimization strategies as outlined in Table 1. We
considered test garments of two types: jumpsuits and dresses.
For each category, we compared the predictions of different
method variants to the ground truth, using five distinct
metrics to assess performance. Our analysis reveals that edge
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Fig. 4 Qualitative comparison of deformations with and without unsupervised losses (Lstretch and Lshear). Test garments include both
tight-fitting jumpsuits and loose-fitting skirts. Removing unsupervised losses leads to a loss of detail, resulting in garments that appear stiffer.

Table 1 Comparison of different transformer implementations and loss optimization strategies. Predictions are evaluated against ground
truth using five metrics: average vertex distance Edist (cm), average deviation of vertex normal Evnorm (◦), and face normal Efnorm (◦),
relative edge length error Elen (%), and discrete Gaussian curvature error Ecurv.

Method
Metric Jumpsuit Dress

Edist Evnorm Efnorm Elen Ecurv Edist Evnorm Efnorm Elen Ecurv

w/o edge processing 3.39 20.43 22.25 11.84 0.043 3.82 22.83 25.69 12.07 0.057
w/o edge gating 2.81 18.35 21.82 9.56 0.039 3.21 20.08 22.15 10.93 0.043
structure-aware transformer 2.92 17.14 19.49 9.87 0.034 3.13 20.77 22.51 11.43 0.038
w/o unsupervised loss 2.72 15.25 17.91 10.31 0.031 3.37 21.09 23.68 9.15 0.045
ours 2.13 13.58 16.41 7.35 0.026 2.45 17.27 19.53 8.94 0.031

processing significantly influences the numerical outcomes,
being particularly impactful. Additionally, the presence of
unsupervised loss plays a crucial role, especially in the
accurate deformation of dresses. These findings underscore
the importance of both edge processing techniques and
unsupervised loss components in the precise simulation of
garment deformations. Our method consistently outperforms
alternative approaches across all evaluated metrics, achieving
the lowest error. This performance demonstrates the efficacy
of our method and establishes it as a superior solution for
garment deformation simulations.

4.2.4 Details and dynamics in continuous motion

The simulation of loose-fitting garments, such as dresses,
poses distinct challenges due to their non-conformal behavior
relative to the body, leading to complex deformations. The
dynamic state of movement for such garments introduces
individualized effects that can vary greatly. In Fig. 5, we

showcase the effectiveness of our method using three test
dresses, each with a distinct body shape and motion pattern.
Our approach successfully captures the realistic behavior
of the hemlines, for various hemline styles undergoing
movement. The dynamic effect of the swing of the dress is tied
to both the characteristics of the garment and the amplitude
of the movement. For example, when there is a rapid and
large rotation of the skeletal joints, the dress responds with a
pronounced dynamic sway. Conversely, when the rotation is
slower, the dynamic effect is accordingly muted, resulting in a
more gentle sway. This variance in dress response is reflective
of the physically realistic behavior we observe.

Additionally, in Fig. 6, our approach demonstrates its ability
to predict dynamic deformations of dresses over long motion
sequences. Owing to our strategically designed method for
the effective transfer of dynamic graph information and a
holistic network optimization process, our system maintains
its ability to generate physically consistent and realistic
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Fig. 5 Our method adeptly simulates dynamic effects and intricate details for a variety of unseen loose-fitting garments, body shapes, and
motion scenarios.

Fig. 6 Our method demonstrates a robust ability to approximate garment dynamics across long motion sequences, consistently reproducing
deformations with rich folds and detailed wrinkles.

garment dynamics throughout lengthy sequences.

4.3 Comparison
4.3.1 Capacity comparison

To further evaluate the capabilities of our proposed
methodology, we conducted a comparative analysis with the
most recent learning-based clothing deformation techniques:
NCS [13], HOOD [15], and DA [36]. Table 2 details the key

features of these methods. NCS exhibits strong capabilities
in physical simulation but is limited to handling specific
types of clothing; even slight increases in the number of
vertices can prevent it from generating deformations. This
indicates that NCS lacks scalability for garments with varying
vertex counts and robustness in dealing with different types
of clothing. In contrast, HOOD can process a variety of
clothing types and topologies, and it generates results that
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Fig. 7 Qualitative comparison to state-of-the-art approaches NCS, HOOD, and DA. Our predictions display reasonable dynamics and rich
details.

Table 2 Comparison of our method to state-of-the-art approaches:
NCS, HOOD, and DA, highlighting differences in deformation
handling, learning schemes, garment generalization capabilities, and
batch processing support.

Deformation
type

Learning
scheme

Genera-
lization

Batch
support

NCS dynamic unsupervised 7 3

HOOD dynamic unsupervised 3 7

DA static supervised 3 3

Ours dynamic unified 3 3

closelymimic physical simulation effects, demonstrating good
scalability and robustness. DA also shows strong scalability
and robustness; however, its trained model only considers
static deformations and lacks unsupervised constraints for
dynamic effects such as gravity and inertia, which impacts the
realism of the deformation outcomes. Our method effectively
combines the advantages of both supervised and unsupervised
learning to simulate dynamic garment deformations, which
is particularly beneficial for animating digital characters
dressed in loose-fitting clothing. Additionally, our method
demonstrates a robust generalization capability, and is adept
at predicting deformations for arbitrary garments, body
shapes, and motions, enabling accurate garment deformation

prediction without the necessity for retraining. This flexibility
is essential for managing diverse character conditions and can
significantly reduce processing time.

The NCS model focuses on one specific garment, allowing
it to operate using a simple architecture of linear layers and
nonlinear activations, achieving an average speed of 853 fps.
In contrast, our method and DA, when processing batches
of data in parallel, reach inference speeds of 280 fps and
467 fps, respectively. Although these speeds ensure real-time
performance, they are significantly slower than NCS. On the
other hand, HOOD requires the inclusion of the previous
frame’s computation results when calculating the next frame,
so is subject to a single-batch limitation. Consequently,
HOOD’s actual inference speed is approximately 14 fps,
much slower than the other methods. Overall, our approach
offers a more comprehensive solution and greater practicality
for real-world applications.

4.3.2 Qualitative comparison

We conducted a qualitative comparison of our method to
state-of-the-art approaches, as depicted in Fig. 7, which
demonstrates garment deformation results for jumpsuits
and dresses during various unseen movements such as
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Table 3 Quantitative comparison to state-of-the-art approaches.
Five metrics are used for comparison: average vertex distance Edist

(cm), average deviation in vertex normal Evnorm (◦) and face
normalEfnorm (◦), relative edge length errorElen (%), and discrete
Gaussian curvature error Ecurv.

Edist Evnorm Efnorm Elen Ecurv

NCS 4.93 29.43 33.08 14.93 0.072
HOOD 6.48 33.85 36.52 16.27 0.089
DA 7.09 34.26 37.14 16.19 0.104
Ours 2.36 17.38 18.92 8.69 0.029

kicking, rotating, and hand-supported standing-up. Given
the tighter fit of the jumpsuit than the dress, we focused on
the fidelity of wrinkle detail reproduction. The NCS model,
tailored to specific garments, achieves reasonably accurate
deformations. Conversely, the HOOD and DA models, which
boast generalizability across different garments, tend to exhibit
less natural deformation effects due to their limited ability to
capture structural garment information. Our method stands
out by producing more refined details with an absence of
noticeable artifacts. In the case of the orange dress undergoing
a rotating movement, it is crucial for the hemline to exhibit a
dynamic, swinging effect synchronized with the movement.
The DA approach falls short in capturing this dynamic,
functioning primarily as a static model. The HOOD and
NCS methods manifest a degree of dynamism but do not
offer the rich, lifelike folds seen in our output. For the dark
green dress featuring loose sleeves, our method captures
the swinging motion during the hand-supported stand-up,
highlighted by the arrows in the figure. The resulting dynamic
is not only convincing but also includes the formation of
natural-looking wrinkles, showcasing the effectiveness of
the SAT and unified learning scheme. Although our method
necessitates a certain amount of preparation time to establish
the ground truth, unlike purely unsupervised approaches, this
investment enables our model to learn and replicate clothing
behavior with high accuracy. This trade-off is justified by the
enhanced deformation realism our method achieves.

4.3.3 Quantitative comparison

We provide a quantitative comparison in Table 3 to further
compare the consistency between each method and the
ground truth. Each of the five metrics employed demonstrates
enhanced accuracy in our predictive models. Nonetheless,
we must acknowledge that this is partially because NCS
and HOOD use unsupervised learning, which can lead to
numerical bias. Additionally, while DA yields results that are
numerically close to those of HOOD, they do not necessarily
match in terms of visual dynamic equivalence. As highlighted
in [42], users are typically unaware of the ground truth, which

Fig. 8 Example of self-collision. Clenching of the shoulder joint
brings the arm into close contact with the torso, leading to mesh
interpenetration between the arm and upper body. This self-collision
challenge is not yet comprehensively managed by our existing
framework.

makes numerical biases difficult to discern. Consequently, we
argue that qualitative assessments should be prioritized.

5 Conclusions
We have introduced a novel learning-based approach,
GarTrans, capable of realistically deforming various garments
on different body shapes performing diverse motions.
Our methodology is composed of two pivotal modules
that work in tandem to produce the deformations. The
dynamic-aware graph construction module incorporates
multi-source deformation factors into the graph structure,
providing a comprehensive representation of the dynamic
state of the garment mesh. Subsequently, the dynamic detail
deformation generation module utilizes the SAT that allows
nodes to effectively assimilate contextual information, thereby
facilitating the generation of intricate folds and wrinkles with
enhanced detail. Moreover, by harmonizing the benefits of
both supervised and unsupervised learning, we provide a
unified deformation optimization process which enhances the
generation of high-fidelity garment deformations. Notably,
our approach enables real-time performance that is roughly
20 times faster than physically-based simulators, paving the
way for interactive applications. Currently, our collision
constraints are specifically tailored to address interactions
between the body and garment, which leaves room for
improvement in scenarios where the clothing experiences
self-collision (as in Fig. 8). Future work will focus on
integrating self-collision state prediction [60] within our
framework, aiming to enhance the quality of garment
simulations.
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