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Abstract—We present a novel solution for mesh-based deformation
simulation from a spectral perspective. Unlike existing approaches that
demand separate training for each garment or body type and often
struggle to produce rich folds and lifelike dynamics, our method achieves
the quality of physics-based simulations while maintaining superior effi-
ciency within a unified model. The key to achieve this lies in the develop-
ment of a spectrum-enhanced deformation network, a result of in-depth
theoretical analysis bridging neural networks and garment deformations.
This enhancement compels the network to focus on learning spectral
information predominantly within the frequency band associated with
intricate deformations. Furthermore, building upon standard blend skin-
ning techniques, we introduce target-aware temporal skinning weights.
The weights describe how the underlying human skeleton dynamically
affects the mesh vertices according to the garment and body shape, as
well as the motion state. We validate our method on various garments,
bodies, and motions through extensive ablation studies. Finally, we
conduct comparisons to confirm its superiority in generalization, defor-
mation quality, and performance over several state-of-the-art methods.

Index Terms—Garment deformation, spectral bias, graph attention net-
work, mesh-based simulation

1 INTRODUCTION

C LOTH animation is a predominant domain in the com-
puter graphics community that simulates the deforma-

tions of virtual garments resulting from temporal changes
or external influences. Its applications span across various
industries including film, video games, fashion design, vir-
tual reality and augmented reality. Physics-based simulation
(PBS) [1], [2] involves the creation of a dynamic model
that leverages physical attributes of clothing, such as mass,
elasticity, and friction, to mimic realistic garment deforma-
tion. However, the computational expense of PBS is sub-
stantial, presenting efficiency challenges when simulating
large quantities of garments in practical applications. As the
alternative solutions, deformation calculations can be sim-
plified and expedited using techniques such as the skinning
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algorithms [3]–[5] or the pose space deformation methods
[6], [7]. Nevertheless, the trade-off for these alternatives is
often a compromise in the realism of the results obtained.

Leveraging deep learning models to predict garment
deformation has emerged as a promising direction, offering
a balance between efficiency and quality. Typically, learning-
based methods [8]–[10] aim to train a nonlinear model using
available data, enabling it to automatically generate garment
mesh deformations based on input descriptions related to
deformation. While these approaches excel in producing
impressive results for tight-fitting garments, they encounter
difficulties when it comes to generating dynamic behaviors
for loose-fitting clothing such as dresses. More recently,
some studies [11], [12] propose to use unsupervised learning
strategies for deforming garments. These approaches offer
an advantage of reducing the need for vast datasets and
are capable of handling cloth dynamics by recasting the
equations of motion as optimization problems, but they
still lack the ability to produce detailed deformations on
different garments within one model.

Crucially, we identify a central problem among existing
learning-based approaches: the insufficient ability of net-
works to accurately learn intricate details of clothing de-
formations. Despite well-designed feature processing layers
and network architectures can seemingly make reasonable
induction, they still face the potential problem of spec-
tral bias, i.e., the middle and high frequency components
where details are located are challenging to learn, leading
to smoothness and stiffness of the results. This problem
has been theoretically criticized in the machine learning
community, but in the context of applications of graph
neural networks (GNNs), the problem has not been ex-
plicitly discussed and resolved. Through the integration of
theoretical analysis and experiments, we find that the key
factor in addressing the challenge of accurately simulating
intricate clothing deformations with neural networks lies
in the reasonable enhancement of the spectral information
represented by the networks.

Besides the quality of details, another major problem is
the dynamic performance of loose-fitting garments. Existing
deformation methods rely on the skinning weights of the
underlying body or approximate garment weights through
networks without fully considering the unique characteris-
tics and motion state of the garment. This leads to models
that lack robustness when dealing with more intense mo-
tions or garments exhibiting high variability, consequently
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Fig. 1. The overview of our deformation network. The network operates as an end-to-end system, taking input in the form of garment information,
body shape, and motion sequences to generate deformation results. On the left side of feature extraction, the graph encoder encodes rest-pose
information and integrates it with the knowledge description of garment type and body shape, resulting in the target-aware graph features. Moving
to the right side, deformation generation involves combining the graph features with motion data to derive temporal weights and blend shapes,
ultimately leading to the deformed garment through skinning.

resulting in obvious artifacts.
In this work, we initiate with a theoretical analysis of

spectral properties of neural networks and garment defor-
mations. We then introduce a novel deformation method
that effectively addresses the aforementioned problems. The
proposal demonstrates advanced generalization abilities
and dynamics of garments regardless of their type, mesh
topology, vertex count, as well as underlying body shape
and motion sequence. An overview of the proposal is shown
in Fig. 1. The main contributions are as follows:

• Spectrum-enhanced deformation network. Based
on the spectral decomposition attributes of garment
mesh deformation, we propose a spectrum-enhanced
graph attention (SEGA) block and formulate a uni-
fied deformation network built upon the spectrum
enhancement of all parameterized hidden layers.
Our approach effectively resolves the challenge of in-
sufficient or unrealistic details resulting from spectral
bias by constraining the network to learn spectral in-
formation predominantly within the frequency band
associated with deformation details.

• Target-aware temporal skinning weights. Given the
diversity of garments and bodies, along with the
varying impact of motion states on different cloth-
ing types, we design target-aware temporal skinning
weights that incorporate the garment type descrip-
tion, body shape, and motion. This fusion empowers
the network to effectively handle the one-stage defor-

mation generation of complex loose-fitting garments
and diverse body shapes.

In terms of validation, we conduct comprehensive ex-
periments to demonstrate the superiority of our proposal
over state-of-the-art approaches in generalization, realism,
and timing performance.

2 RELATED WORK

In this section, we review existing methods for clothing
animation, categorizing them into two main approaches:
physics-based simulation and learning-based models, and
then discuss the research and applications related to spectral
bias.

Physics-based simulation. Physics-based methods are
employed to achieve a high degree of realism in deforma-
tion effects. These methods build a model that considers
the physical properties and dynamics of the garment. By
numerically solving the model equations, the deformed
mesh state at each time step is obtained, leading to re-
alistic clothing behaviors [13]–[15]. In recent years, some
research efforts have been devoted to developing methods
[2], [16] for simulating hyperrealistic clothing, but obtain-
ing impressive level of results comes at the expense of
high computational costs. This computational expense re-
mains a common challenge for physics-based simulation.
To enhance efficiency, researchers have explored several
approaches, including using position based dynamics [17]–
[19], optimizing GPU-based algorithms [20]–[22], adding
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fine details on coarse garment meshes [23]–[25], and trad-
ing realism and accuracy for better performance [26], [27].
Nonetheless, employing physics-based methods in real-time
applications with limited computing resources remains an
open challenge. Additionally, the task of setting appropriate
simulation parameters is intricate and time-consuming. It
often involves the laborious process of manually fine-tuning
parameters to adjust cloth properties or mesh structure,
requiring specific expertise. To address it, some approaches
attempt to automatically extract physical parameters from
an image [28], [29], a video [30], [31], or learn from data
[32], [33]. In our method, we use physical simulation data as
ground truth to train the neural network, ensuring efficient
and high-quality deformation predictions. To define opti-
mization objectives, we borrow some physics-based cloth
simulators that can be formulated as time-varying partial
differential equations, and use them as our loss functions,
including gravity, stretch, and shear losses.

Learning-based models. With the advancements in
deep learning, learning-based clothing deformation meth-
ods [34]–[39] have become widely adopted for their high
efficiency and automation. Pioneering work [6] explores a
pose space deformation which represents deformations as
mappings from a pose parametric space. Building on this,
several studies propose to learn garment deformations from
pose, shape, or size parameters [40]–[43]. For generating
garment deformations with style variations, Patel et al. [44]
introduce TailorNet which regresses coarse and fine defor-
mation in two steps via multi-layer perceptions (MLPs).
However, the trained model has a large memory and can
only handle garment meshes with specific topology.

To tackle the model generalization problem, researchers
have turned to graph neural networks (GNNs), leveraging
their powerful 3D data processing capabilities to handle
arbitrary garment meshes. Liu et al. [45] work on applying
graph convolution network to generate skinning weights
for production characters with non-manifold meshes. In-
spired by it, the subsequent studies [10], [46]–[53] have also
utilized GNNs to predict skinning weights, blend shapes,
or corrective displacement based on rough deformation
for articulated characters. In a different line of research,
researchers [8], [54] focus on the automatic generation of the
detailed clothing effects. These methods typically leverage
the SMPL parameterized human body [55] as a base, and
the deformation of the garment is driven by the variations
in the underlying body. Building upon PointNet [56], Gun-
dogdu et al. [57] propose a two-stream architecture GarNet
and introduce curvature to enhance clothing details. The
approach yields results similar to physics-based simulations
but achieves faster computation speed. Li et al. [58] propose
SwinGar, a two-stage method that separates low- and high-
frequency deformation generation. In the high-frequency
part, they combine long short-term memory (LSTM) [59]
and GNN to enhance garment details. Additionally, they
design a frequency control technique to mitigate spectral
bias during optimization. But their method only addresses
graph convolutional layers and overlooks all other layers
in their network. This oversight weakens the theoretical
foundation of their approach, resulting in the need for a
two-stage structure that significantly increases the running
time and GPU memory usage for accurate predictions.

In contrast, our method achieve to predict blend weights
and blend shapes directly to generate deformation, offering
faster execution and compatibility with all graphics engines.

In order to reduce the reliance on ground truth data,
PBNS [11] proposes unsupervised solutions which formu-
lating an implicit physics-based simulation by introducing
several loss terms. While this method does not require data
preparation, it suffers from repeated training when deal-
ing with new garments. Subsequently, the authors present
DeePSD [60], which utilizes a combination of supervised
and unsupervised network structures to enhance deforma-
tion quality. Unlike PBNS, DeePSD enables the model to
generalize to unseen garments without the need for addi-
tional training. However, both methods produce static de-
formations. To enable dynamic clothing effects, SNUG [61]
incorporates an inertia term into the model but produces
relatively stiff results with fold patterns. Similarly, Bertiche
et al. [12] achieve cloth dynamics deformations using an
unsupervised scheme, but the model is specific to the given
body and garment, limiting its generalization. De Luigi et al.
[62] model garments as unsigned distance fields to achieve
the ability of processing diverse garment types, but their
method primarily focuses on form-fitting garments in static
scenarios. Grigorev et al. [63] employ a multiscale GNN to
generate realistic dynamic deformations for arbitrary mesh
topology. However, the designed pipeline is limited to one
batch size, which affect its scalability and efficiency in real-
world applications.

In an alternative line of research, approaches focus on
clothing deformation from the perspective of computer
vision, including texture learning [64]–[66], wrinkle style
transfer [38], [67], and pixel-based clothing generation [68]–
[71]. While these methods can achieve photo-realistic effects,
they may struggle to capture 3D shape details accurately
and can be sensitive to environmental factors like illumina-
tion and viewpoint.

Learning of different frequencies. Numerous prior
studies on deep neural networks (DNNs) have consistently
demonstrated a fundamental bias pattern in their learning
process, i.e., low-frequency functions are always learned
first and better [72]–[75]. Consequently, the concept of re-
ducing spectral bias to enhance neural network performance
has garnered considerable attention within the machine
learning community.

In a notable contribution, Rahaman et al. [76] link the
Fourier spectrum of a neural network to the Lipschitz
constant. They further explore the influence of the data
manifold’s shape, revealing that complex manifold shapes
can facilitate the learning of higher frequencies. Related
theoretical analysis and validations on different network
structures can also be found in [77]–[81]. Regarding the
capacity to learn higher-frequency information, an empir-
ical evidence has established that deeper networks pos-
sess the capability to capture higher-frequency information
that shallow networks cannot, as demonstrated in [82]–
[84]. These studies demonstrate the theoretical feasibility of
adjusting the learned spectra of DNNs.

In real-world applications, Tancik et al. [85] introduce
a Fourier feature mapping technique to transform neural
tangent kernels, achieving stationary states with adjustable
bandwidth. Their work highlights the substantial impact of
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frequency bands on 2D and 3D regression tasks. Miyato et al.
[74] enhance the quality of image generation by fine-tuning
the spectral features of hidden layers. Shi et al. [75] intro-
duce a method for controlling spectral bias in convolutional
layers, preventing eventual performance degradation, and
expediting convergence in image inversion tasks. The use
of spectral decomposition techniques to analyze consensus
protocols within fixed topologies [86] and to represent the
abstract traffic scenarios [87] also provides practical insights
into these systems. These investigations not only validate
the significance of adjusting frequencies in enhancing image
generation and restoration, utilizing convolutional neural
networks or attention-based transformers. They also directly
inspire our idea of enriching deformation details of garment
meshes through spectrum-enhanced GNNs.

3 GARMENT NEURAL DEFORMATION

Given an initial garment mesh template T with N ver-
tices, an SMPL [55] human body with shape descriptor
β, and a sequence of T pose transformation information
Θ = {θt, θt−1, . . . , θt−T+1} controlled by corresponding
skeleton J , our approach aims to learn a deep neural
network F for predicting clothing deformation on top of
the animated human body. The overview of our proposal
can be formulated as follows:

Mt = F(T, β,J ,Θ), (1)

where Mt is the deformed garment mesh at current state
t. Intuitively, F should be designed to fulfil the following
requirements: a) the capability to process diverse garment
meshes and effectively represent their personalized behav-
iors, b) the ability to handle time series of body movements,
and c) the realization of intricate clothing deformations
with particular attention to details. In this work, instead of
directly yielding the vertex positions of the garments Mt

in the animation, we select to force the network to generate
the temporal skinning weights W̃ and the blend shapes B,
which are used for deforming T by a skinning algorithm
W (·) (e.g., linear blend skinning or dual quaternion):

Mt = W (M̃(β,Θ,T),J ,Θ, W̃(β,Θ,T)), (2)

M̃(β,Θ,T) = T+B(β,Θ,T). (3)

In particular, as shown in Fig. 1, our end-to-end de-
formation network F primarily consists of six modules.
More specifically, we rely on a garment type parser fgp, a
body shape parser f bp, a garment graph encoder f enc, and
a motion processor fmo1 to compute the garment skinning
weights W̃ so that the produced weights are garment-
, body-, as well as motion-dependent. Additionally, we
fuse the high-level garment features from the encoder with
features from the two parsers and another motion processor
fmo2, then, forward the result into the garment decoder f dec

to estimate blend shapes B. In its entirety, the workflow
composed of six modules can be summarized into two
parts: feature extraction (left half of Fig. 1) and deformation
generation (right half of Fig. 1).

To achieve the above regression, we employ linear lay-
ers and non-linear activations for feature extraction in the

parsers of fgp and f bp, LSTM for time-varying feature trans-
formation in the motion processors fmo1 and fmo2, and graph
learning layers to capture graph-structured information in
the garment encoder f enc and decoder f dec. Among the
various types of information processing, the most intricate
part involves extracting and propagating garment graph
features, leading to vertex-level predictions, which we elab-
orate in the subsequent section.

4 METHODOLOGY

4.1 Graph Learning for Garments

Handling information from garment meshes presents a chal-
lenging task due to their arbitrary topologies and vertex
counts. A promising solution is to represent the mesh as
a graph and apply graph learning algorithms, which has
gained attention in garment animation field in recent years.
In our work, we represent a garment mesh T as a graph
G = (X , E), where X = {x1, ...xN} represents the set of
features from N vertices and E denotes the connectivity
between vertices. For each vertex, the features are defined
as: xi = [p⊤i , n

⊤
i , d

⊤
i ] ∈ RF , which consists of the position

p⊤i ∈ R3, the normal n⊤
i ∈ R3, and the distance to all

skeletal joints of the body d⊤i ∈ RS , where S denotes the
number of the SMPL body joints. This feature assignment
makes the garment graph highly expressive, providing a
comprehensive representation of both the local garment in-
formation and the positional relationships between vertices
and the driving skeleton in rest pose.

Given the constructed garment mesh graph, the next step
is to process it with graph learning techniques to effectively
extract high-level representations. Graph attention networks
[88] leverage the attention mechanism to concentrate on sig-
nificant neighbors of each vertex in the graph, allowing the
network to identify and propagate meaningful information
to subsequent steps. The graph attention block (GATB) has
been verified for aggregating complex graph information
and handling nonlinear deformation tasks [48], [89]. The
processing of the graph feature matrix X = [x1, ...xN ] ∈
RF×N can be expressed as follows:

Ψ(X) = v(X)σ(s(X))⊤∥m(X), (4)

where s : RF×N → RN×N is for computing the attention
scores, and σ represents the softmax function for normal-
ization. The attention score matrix s(X) is computed dy-
namically based on pairwise relationships between vertices.
Its calculation is local and vertex-wise, relying only on the
features of individual vertex pairs (xi and xj), rather than
the total number of vertices N . The softmax normalization
further ensures scalability by acting independently for each
vertex, allowing the GATB to handle graphs with varying
N without requiring resampling or a fixed graph size. For
a more detailed discussion of the graph attention mecha-
nism, we recommend [88] as a reference. v,m : RF×N →
RF ′×N ,RF ′′×N are the linear transformations. F , F ′, and
F ′′ stand for feature dimensions of corresponding submod-
ules. The symbol ∥ denotes the concatenation, concatenating
the attention weighted part Φ(X) = v(X)σ(s(X))⊤ and the
self-reinforcement stream m(X). In this way, features can be
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efficiently transmitted to deeper layers through attention ag-
gregation and self-reinforcement, enabling the computation
of hidden representations of irregular mesh graphs.

4.2 Spectrum-Enhanced Graph Learning

Frequency of deformation details. From a spectral point
of view, garment deformation is commonly divided into
a low-frequency part, representing overall changes that
follow the body’s movements, and a high-frequency part,
which captures intricate details such as wrinkles. Build-
ing upon this notion, several studies [10], [44], [63] have
adopted the stepwise deformation learning framework to
address the complex task of deformation prediction. How-
ever, these methods have not fully overcome the difficulty of
insufficient garment details, particularly when dealing with
multiple garment types with a single neural network. The
underlying reason for such limitations lies in the difficulties
of deep neural networks to effectively process the required
frequency band information. A similar spectral bias phe-
nomenon has been observed in image prior, with some basic
ideas for measuring and controlling frequency information
discussed in [75]. However, the ability of GNNs to learn
different frequency information is still poorly explored.

To solve this problem fundamentally, we first perform a
harmonic analysis on the frequency components of the gar-
ment mesh. Our crucial observation is that the observable
deformation details are not confined to the highest frequen-
cies, but instead, they predominantly exist in the middle
and relatively high frequency ranges. To effectively capture
these different frequency components, we perform a decom-
position of a garment’s Laplacian matrix and sort the corre-
sponding eigenvectors based on their eigenvalues. Specifi-
cally, we select about 3% eigenvectors corresponding to the
smallest eigenvalues for reconstructing the low-frequency
part, 3% to 30% eigenvectors for reconstructing the middle
frequency part, while the remaining eigenvectors are used
to represent the highest frequency part [90]. It is noteworthy
that, due to the absence of an explicit definition, this division
into low, middle, and high frequencies are based on empiri-
cal observations relying on exponential correlations between
different frequency components. As shown in Fig. 2, the
low frequencies primarily capture rough, smooth deforma-
tions, whereas the mid-range frequencies contain nearly all
deformation details. Notably, the high-frequency details in
the highest frequency band are almost imperceptible. This
example highlights the importance of a network’s ability
to accurately learn information in the middle and higher
frequency bands to achieve successful garment deformation.
Therefore, our main proposal lies in designing a spectrum-
enhanced strategy for controlling detail learning, which will
be further elaborated in the following.

Basics of spectrum-enhancement. Adjusting the net-
work’s Fourier spectrum to limit the fitting of unimportant
frequencies is a feasible approach to prevent model per-
formance degradation during mid-frequency deformation
learning and improve the learning of core details. With this
basic idea, we aim to upper bound the Fourier coefficients
of the core component (i.e., GATB) in our network, for the
sake of constraining the Fourier spectrum of the network.
Following the principles of Lipschitz continuity as described

Fig. 2. Decomposition of different frequency components of an example
garment. The “Low frequency + Mid. Frequency” part visually resembles
the original garment closely, while the high(est)-frequency part is almost
imperceptible to the naked eyes.

in [75], [80], [81], we can achieve this by enforcing Lipschitz
continuity on GATB. Specifically, a Lipschitz continuous
function is derivable almost everywhere [91], i.e., derivable
at every data point outside a set of Lebesgue measure zero,
and the Lipschitz constant LF of the function is:

LF (Ψ) = sup
X∈F

|||DΨX |||F , (5)

where |||Ψ|||F = maxX ∥Ψ(X)∥F / ∥X∥F and ∥·∥F is Frobe-
nius norm. DΨX stands for the Fréchet derivative of GATB
at X . According to harmonic analysis theory [92], the
Fourier coefficients of Ψ are bounded by the Lipschitz
constant:

|ck| ≤
LF (Ψ)

Ck2
, (6)

where ck denotes the k-th Fourier coefficient, |·| stands for
the norm of a complex number. C is a constant during
deriving the coefficient bound. We can find that the key to
determining the upper bound on the Fourier coefficients lies
in adjusting LF (Ψ). However, in the absence of any con-
straints over the attention layer, LF (Ψ) remains uncertain.

Next, we present theorems that establish the relationship
between the upper bound of the Lipschitz constant and
GATB. Additionally, we introduce a scaling strategy to
effectively enforce spectral adjustment.

Theorem 1. Given a GATB function, if both the attention
weighted part and the self-reinforcement stream are Lipschitz
continuous, then the GATB as defined in Eq. (4) is Lipschitz
continuous and

LF (Ψ) ≤
√
LF (Φ)2 + LF (m)2. (7)

A detailed proof and discussion of the theorem and subse-
quent lemmas can be found in supplementary materials. As
shown in Eq. (7), if we can determine LF for both parts,
we can obtain the desired upper bound for GATB. In line
with previous studies that constrain frequency information
or Lipschitz constant within various network structures [74],
[78]–[81], we also select to reconstruct the hidden layers to
attain the Lipschitz constant’s upper bound, which in turn
bounds the Fourier coefficients. On the one hand, m is a
linear function, and its Lipschitz constant LF (m) is equal
to the spectral norm of its parameters ∥Wm∥∗, where Wm

represents the parameters of the operation m. Therefore,
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LF (m) can be upper bounded by constraining its spectral
norm to a constant value τ using a scaling function. The
linear function m(X) is then formulated as:

m(X) =
τWmX

max(τ, ∥Wm∥∗)
. (8)

On the other hand, LF (Φ) is still unknown. Next, we will
demonstrate how to determine its upper bound, which is
also the upper bound of |||DΦX |||F .

Norm of attention derivative. For the input feature X ∈
RF×N , the norm of the Fréchet derivative is upper bounded
by:

|||DΦX |||F ≤
∥∥∥DvX(H)σ(s(X))⊤

∥∥∥
F

+
∥∥∥v(X)Dσs(X)(DsX(H))⊤

∥∥∥
F

(9a)

≤ |||DvX |||F ∥σ(s(X))∥F
+
√
2
∥∥∥v(X)⊤

∥∥∥
(∞,2)

|||DsX |||F , (9b)

where v(X)⊤ is a matrix (temporarily denoted as M for
simplicity), and ∥M∥(∞,2) = maxi(

∑
j M

2
i,j)

1/2. DsX can
be regarded as a function (temporarily denoted as f ), and
|||f |||F = maxX ∥f(X)∥F / ∥X∥F (resp. |||f |||F,1 in Eq. (11)).
Eq. (9b) shows that LF (Φ) is determined by two terms:
the first one is related to the output linear operation and
the uniformity of the probabilities, while the second one is
related to the range of the output linear operation and the
gradient of the score function.

Next, we will examine these two terms in Eq. (9b)
through Lemma 1 and 2, and demonstrate that bounding the
spectral norm of the linear operation and the score function
enables us to control both terms simultaneously.

Lemma 1. If the spectral norm of the weights of the linear
operation v(X) is bounded by τ and the value of the score function
s(X) is bounded by α, then the first term of Eq. (9b) is upper
bounded by

|||DvX |||F ∥σ(s(X))∥F ≤ τeα, (10)

where α and τ are constants used as bounds for the function.
The proof of Lemma 1 can be found in supplementary
materials.

For the second term of Eq. (9b), if there are no addi-
tional constraints, it cannot achieve a constant upper bound
because the output linear operation

∥∥v(X)⊤
∥∥
(∞,2)

changes
with the input and parameters. To address this issue, we
introduce another scaling function n : RF×N → R+ into
the original score function to achieve a tight bound of
the second term. The score function is scaled as s(X) =
spre(X)/n(X), where spre(X) is the original unscaled score
function. Then, we have:

∥v(X)⊤∥(∞,2)|||DsX |||F ≤∥∥v(X)⊤
∥∥
(∞,2)

|||DspreX |||F
n(X)

+∥∥v(X)⊤
∥∥
(∞,2)

|||DnX |||F,1 ∥spre(X)∥F
n(X)2

. (11)

Lemma 2. With a wise choice of the scaling function n, the
right side of Eq. (11) can be constrained to be a constant, i.e.∥∥∥v(X)⊤

∥∥∥
(∞,2)

|||DsX |||F ≤ α+ ατ. (12)

Choice of scaling function. When the score function s
is Lipschitz, Lemma 2 can be satisfied by setting the scaling
function as follows

n(X) =
max{∥spre(X)∥F ,

∥∥v(X)⊤
∥∥
(∞,2)

LF (s
pre)}

α
, (13)

where the denominator ensures that the gradient of the
scaled scores remains low compared to the input features.
Further discussion can be found in supplementary materi-
als.

Theorem 2. If both Φ(X) and m(X) are constrained, the
Lipschitz constant of GATB is upper bounded by

LF (Ψ) ≤
√(

τeα +
√
2(α+ ατ)

)2
+ τ2. (14)

By scaling the linear operations and the score function
within our network to adjust the upper bound of the Fourier
coefficients of hidden layers (i.e., linear and graph atten-
tion layers), we can constrain the spectrum range that the
network learns, thereby directing its attention towards the
desired frequency bands for garment deformation (i.e., the
middle and higher frequencies). In essence, the parameters
α and τ act as hyperparameters of the GATB, directly
controlling its spectral expressiveness. The modified GATB,
referred to as spectrum-enhanced graph attention block
(SEGA), serves as the basis for our network. It is noteworthy
that our SEGA does not require the transformation of input
features into the frequency domain. By tuning the parame-
ters α and τ , we can directly influence the frequency range
that the network targets, encouraging a focus on the mid-
frequency band. This spectrum-enhanced approach leads
to more accurate and controllable modeling of garment
deformation.

4.3 Target-Aware Temporal Weights and Blend Shapes

Once the network with SEGA basis is established, our next
objective is to generate the skinning weights and blend
shapes for garments deformation.

Skinning weights indicate the extent to which each bone
in the skeleton affects a vertex, and we observed that various
types of garments should be assigned vertex weights with
varying degrees of bias. For example, the lower body bones
should exert a stronger influence on the hemline vertices of
a dress compared to the leg vertices of a trouser suit, so that
the corresponding garment can smoothly follow movements
and produce a natural swinging effect. However, existing
learning-based deformation methods either assign constant
weights to garments based on nearest-neighbor body points
in the rest pose [41], [44], [61], or optimize the weights along
with the network parameters but do not fully consider the
garment object characteristics and the state of movement
in which they deform [11], [60]. These implementations
fall short in realistically modeling the intricate dynamics of
personalized clothing, especially for loose-fitting garments
that do not tightly conform to the body. Therefore, it is es-
sential to first explore a garment global shape representation
method for diverse garments and then integrate it into the
skinning weight generation.

Garment type descriptor. Inspired by mesh spectral
analysis, we find that Laplacian eigenvalues and can reveal
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Fig. 3. Affinity matrices A and A∗ for various dresses and jumpsuits. The
size N∗ of approximated A∗ is fixed through all garments. The larger the
value in the matrix, the darker the blue color. Similarities are observed
among matrices of the same garment type, with noticeable differences
attributed to the length of sleeves or pants legs.

the intrinsic characterization of the shape structure. Specif-
ically, starting from a garment mesh with N vertices, we
build an affinity matrix A ∈ RN×N using a Gaussian func-
tion, where Ai,j = exp(−d2i,j/2r

2) with di,j representing the
geodesic distance between vertex i and j, and r being Gaus-
sian kernel width set to the maximum geodesic distance
between any two vertices. Due to the time complexity for
eigen decomposition of an N ×N affinity matrix, we adopt
the Nyström approximation [93] to efficiently approximate
the leading eigenvalues and eigenvectors. To achieve this,
we begin to employ the furthest point sampling which
involves randomly selecting an initial vertex and iteratively
adding the vertex farthest from the already-sampled vertices
until a fixed number N∗ of vertices is reached, where
N∗ ≪ N . Once the set of sampled vertices is obtained, we
construct its smaller affinity matrix A∗ ∈ RN∗×N∗

, which
is then decomposed as A∗ = UΛU⊤. Fig. 3 illustrates the
actual affinity matrix A and the sampled smaller affinity
matrix A∗ for dresses and jumpsuits. It can be seen that
the matrices can provide effective shape representations and
also tend to be global in nature. Consequently, we combine
the eigenvalues from A∗ into a vector λ = [λ1, ..., λN∗ ],
which serve as our garment global shape descriptor. This
descriptor enables differentiation between various types
of garments, thereby enhancing the network’s ability to
generalize across different styles. Theoretically, it allows for
generalization to garments with any number of vertices, not
limited to those within the range encountered in the training
garments.

Target-aware temporal weights. Recent studies have
revealed that using fixed skinning weights [41], [44] for
garments fails to accurately represent phenomena such as
the sliding of loose-fitting garments on the body during
movement. To improve this, dynamic skinning weights
[35], [38] have been proposed, calculated by averaging the
body vertices close to the garment in each frame. This
method helps mitigate the unnatural rigidity often observed

Fig. 4. Temporal skinning weights. The weights of joints affecting gar-
ment vertices change dynamically during the motion sequence, facilitat-
ing reasonable global deformations.

with static weights, yet several challenges persist. Firstly,
the skinning weights [35] only consider the current state,
overlooking crucial temporal sequential information that
significantly influences garment dynamics. Secondly, they
[35], [38] fail to consider the response properties of the target
(i.e., garment or body) in the skinning weights. Integrating
this information is essential for developing a generalized
deformation prediction model.

To overcome these shortcomings, our method enhances
the generation of garment skinning weights by explicitly
incorporating prior knowledge from the garment, body,
and motion information into the graph embedding of each
vertex. Concerning the garment features, as depicted in the
left part of Fig. 1, we initially process the garment type
descriptor λ using a type parser fgp to extract garment type
knowledge. Additionally, the 3D garment mesh graph G is
encoded using a spectrum-enhanced graph encoder f bp. For
the body object, we handle the shape parameter β from the
SMPL human model through a body shape parser to derive
body shape knowledge. These three processed features are
then integrated to create the target-aware graph features:

Pi,j,k =
F enc∑
i′=1

fgp(λ)i′f
enc(G)i′,j,kf bp(β)i,j , (15)

where fgp : RN∗ → RF enc
, N∗ is a fixed number repre-

senting the length of eigenvalues of A∗, F enc stands for the
output feature dimension of the spectrum-enhanced graph
encoder. f bp : R|β| → RF enc×S , |β| is the length of the
SMPL body shape descriptor, S is the number of body joints,
also corresponding to the head number of graph attention
operation. f enc : RF×N → RF enc×S×N , F means the input
feature dimension.
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In addition to target-awareness, it is essential for the
skinning weights to adaptively respond to changes in
body movement. To achieve this, we utilize a motion
parser fmo1 to process the consecutive movement Θ =
{θt, θt−1, . . . , θt−T+1} from SMPL human body poses θ ∈
R3(S+1) into high-level features. These features are then
infused with the target-aware graph features to compute the
adaptive skinning weights:

W̃j,k =
F enc∑
i=1

Pi,j,kf
mo1(Θ)i, (16)

where fmo1 : RT×3(S+1) → RF enc
. T is the number of frames

included in dynamic information. This multi-feature inte-
gration allows personalized features to directly influence the
skinning weights, providing the network with expressive
power to handle diverse data. An example of generated
target-aware temporal skinning weights is depicted in Fig.
4, demonstrating how they dynamically adjust in response
to the motion state.

Target-aware temporal blend shapes. To compute blend
shapes B, we also combine the processed features from
two parsers and the graph encoder to generate the blend
graph features that integrate body and garment awareness.
Given that the deformation information contained in blend
shapes is considerably more complex than skinning weights,
we introduce an additional decoder to generate detailed
corrections. In particular, the features are forwarded into the
garment decoder to predict the blend shape:

Xmid
i,k = P ′

i,kf
mo2(Θ, β)i, (17)

B = f dec
(
Gmid

)
, (18)

where fmo2 : (RT×3(S+1),R|β|) → RF encS and the feature
channels of P is flattened and concatenated to produce
P ′ for the element-wise multiplication. Xmid represents the
middle feature before feeding into the spectrum-enhanced
graph decoder f dec. f dec : R(F encS)×N → R3×N . The graph
Gmid is composed by the vertex feature Xmid and the vertex
connectivity E .

After calculating W̃ and B, the deformed garment mesh
can be computed with Eqs. (2) and (3). Instead of predicting
vertex positions, our methodology predicts blend skinning
weights and blend shapes. This pipeline aligns with the in-
dustry standard in 3D animation, ensuring the compatibility
with all major graphics engines. Our one-stage method also
increases computational efficiency when compared to the
two-stage methods such as TailorNet [44] and SwinGar [58],
because it eliminates the operations of intermediate data
conversion and independent high-frequency detail gener-
ation.

5 EXPERIMENTS

Our neural network consists of six functionally distinct
modules, and we use both supervised and unsupervised
losses for training. The dataset includes various types of
garments from Cloth3D [94], human bodies from SMPL
[55], and motion sequences from the CMU Mocap [95].
Further details on network parameterization, training im-
plementation, and dataset description are provided in the
supplementary material.

5.1 Generalization Assessment

In our study, we represent garments as graphs, enabling the
handling of garments with diverse topologies. To evaluate
its generalzation capability of our model, we conduct tests
on unseen garments and display the deformation results
in Fig. 5. For each test garment, we also present similar
training garments with gray color to provide a context
for comparison. We measure dissimilarity between a test
object TP and a training object TQ using the chi-square
distance applied to their respective global shape descriptors,
as defined in Sec. 4.3. This dissimilarity metric quantifies
how different the test and training garments are in terms of
their shapes:

Dissim(TP ,TQ) =
1

2

N∗∑
i=1

(|λTP

i | 12 − |λTQ

i | 12 )2

|λTP

i | 12 + |λTQ

i | 12
. (19)

For each test garment, we present the four training garments
that exhibit the least dissimilarity, highlighting noticeable
distinctions in various aspects such as sleeve length, hem-
lines, and trouser legs.

More specifically, among the six test garments, the three
depicted in the upper part of Fig. 5 exhibit similarities to
the training garments and basically fall within the training
data distribution. In contrast, the lower three garments (T-
shirt, vest, and cardigan) are completely different in type
from those used in training, such as dresses and jump-
suits. These garments lie outside the training data distri-
bution, as illustrated by the distribution visualization in
the supplementary material. Despite these deviations, our
method successfully generates plausible deformations with
rich details. Here, the prediction of deformations for the
cardigan is particularly challenging, given the absence of
similar front-open type garments in our dataset. This type of
garment tends to fit more closely around the front opening,
sometimes making it difficult to achieve a natural draping
effect. Nonetheless, our model is still capable of accurately
reproducing the intricate details of the folds in the cardi-
gan’s back area. This experiment shows that our method can
generate realistic deformations for unseen garments with
diverse garment types. It remains effective even when the
test data deviates from the training sample distribution.

In addition to its versatility with different garments, our
model also has the ability to generalize across diverse body
shapes. As depicted in Fig. 6, three different body shapes
are wearing the same dress and performing the same dance
motion sequence. By incorporating body shape knowledge
into our graph features, our model can predict tailored folds
and wrinkles for various body shapes.

5.2 Evaluation on Spectrum Enhancement

Effect of SEGA parameters on overall deformation. To
highlight the impact of our proposed spectrum-enhanced
network, we conduct a comparative analysis of the net-
work’s performance under various settings of boundary
parameters α and τ . Table 1 presents a quantitative result of
the disparities between our predictions and physics-based
simulations, considering vertex positions, vertex normal
angles, and edge lengths. All test garment types can be
found in supplementary materials. Here, we empirically
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Fig. 5. Qualitative results on test data. We emphasize our generalization ability with diverse clothing by visualizing the dissimilarity between test
and training garments: the four training clothing items (in gray) that exhibit the closest global shapes to each test case (in color), along with their
corresponding affinity matrices.

TABLE 1
Boundary parameter choices for network spectrum-enhancement. The values before and after the slash symbol indicate the average vertex

distance (cm), average angular deviation (◦) of vertex normals, and average edge length (mm) between predictions and PBS. Setting the
hyperparameters α and τ to values of 2 achieves optimal performance across most evaluated metrics.

Long Dress Short Dress Long Jumpsuit Short Jumpsuit

w/o 3.26 / 18.9 / 0.61 2.97 / 16.5 / 0.48 2.86 / 15.7 / 0.49 2.91 / 16.4 / 0.44
α = 1, τ = 1 2.61 / 16.7 / 0.48 2.56 / 15.5 / 0.35 2.35 / 12.2 / 0.37 2.31 / 13.6 / 0.34
α = 1, τ = 2 2.58 / 15.8 / 0.45 2.53 / 15.1 / 0.35 2.32 / 11.8 / 0.36 2.28 / 13.5 / 0.34
α = 1, τ = 3 2.59 / 17.3 / 0.50 2.52 / 15.4 / 0.35 2.31 / 10.7 / 0.36 2.22 / 12.7 / 0.29
α = 2, τ = 1 2.53 / 15.0 / 0.44 2.48 / 14.6 / 0.33 2.27 / 11.4 / 0.34 2.23 / 13.1 / 0.31
α = 2, τ = 3 2.51 / 14.4 / 0.33 2.42 / 13.8 / 0.29 2.21 / 10.4 / 0.30 2.17 / 12.1 / 0.26
α = 3, τ = 1 2.56 / 15.4 / 0.44 2.51 / 14.9 / 0.34 2.29 / 11.4 / 0.34 2.25 / 13.2 / 0.32
α = 3, τ = 2 2.55 / 15.6 / 0.44 2.51 / 15.4 / 0.34 2.29 / 10.9 / 0.35 2.25 / 12.9 / 0.31
α = 3, τ = 3 2.49 / 14.7 / 0.33 2.47 / 14.2 / 0.29 2.25 / 11.0 / 0.32 2.21 / 12.5 / 0.27
α = 2, τ = 2 2.46 / 14.2 / 0.42 2.37 / 13.3 / 0.27 2.20 / 10.5 / 0.30 2.13 / 11.7 / 0.25

examine three values for each parameter. The variations
in error across different settings are relatively minor, with
the best performance observed for α = 2, τ = 2, and the
worst for α = 1, τ = 1. The parameters α and τ can
take decimal values. However, considering the quality of
the experimental results, it is not cost-effective to spend
computational resources on finding the ultimate parameter-
optimized solution; hence, we do not conduct further ex-
periments with higher precision. It is noteworthy that we
also evaluate the network without spectrum-enhancement,
which yielded obviously higher errors. This result stands
in stark contrast to the better performance of the proposed
SEGA.

To further validate the effectiveness of the spectrum en-
hancement strategy and the impact of its parameter settings
during training, we select the top two performing configu-

rations and the lowest-performing configuration from Table
1. We conduct an ablation study by plotting the average
vertex errors on the validation data during the course of
network training. In Fig. 7, the orange line represents the
network in its original state without spectrum enhancement,
while other lines, depicted in various colors, represent the
network’s performance when SEGA is applied with differ-
ent parameter settings. Theoretically, the hyperparameters
α and τ impact the model’s hidden layers in distinct ways.
Specifically, τ primarily affects the spectrum range of the
linear layer, while α primarily influences the attention com-
putation. Together, these parameters facilitate spectral con-
trol within the SEGA framework. If excessively large values
are chosen for either parameter, the constraints that the
method is intended to impose become ineffective, leading
to a loss of meaningful control and causing instability in the
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Fig. 6. Deformation results across different body shapes. Areas in close contact with thebody exhibit fewer wrinkles, while hemlines tend to display
more wrinkles. The diversity anddynamics of details shows the generalization ability of our method across varying body shapes.

Fig. 7. Average vertex error for different network spectrum-enhancement
settings. Networks without spectral enhancement significantly fall be-
hind our method in learning deformations.

learning process by affecting the distribution of parameters
in the hidden layers. Conversely, setting these values too
low causes the model to focus predominantly on a very
narrow, low-frequency range of the data. This limited focus
hinders the ability of the model to accurately learn com-
plex deformation, thus reducing its effectiveness. Through
our experiments, we find that appropriate parameterization
improves the model precision and is crucial for achieving
garment deformations that closely align with physics-based
behavior.

Effect of SEGA parameters on different frequency
components. Next, to emphasize the ability of our proposed
method in learning the frequency component related to
intricate details, we categorize the test garment mesh into
three distinct frequency bands: low, medium and high,
following the frequency decomposition method outlined in
Fig. 2. We evaluate the model’s inference performance on
these bands individually. To do this, we save the network
weights acquired at 50-epoch intervals during training and
utilize them to predict deformations for each frequency part

Fig. 8. Average error of three test garments in different frequency bands
with various network spectrum enhancement settings. The first column
illustrates the vertex distance error in the low-frequency components,
comparing the prediction results with those of PBS. The second column
corresponds to the middle-frequency components, while the last column
corresponds to the high-frequency components.

of the test garments. As depicted in Fig. 8, the results with-
out spectrum enhancement strategy are worse than any of
SEGA solutions. The learning of low-frequency components
appears consistent using SEGA with different enhancement
settings, indicating comparable efficiency and effectiveness.
For middle and high-frequency components, using the orig-
inal network without spectrum enhancement reveals serious
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Fig. 9. Qualitative results with different network spectrum enhancement
settings. The red frames in the first column highlight smoother regions in
the original network without spectral enhancement. The proposed SEGA
improves in generating rich details, with α = 2, τ = 2 setting performing
the best.

Fig. 10. Isolated validation of spectrum-related factors on deformation:
the SEGA and thegarment type descriptor. We remove (w/o) and retain
(w/) them separately.

spectral bias, hindering its ability to effectively capture
detailed deformations. The situation becomes more pro-
nounced, especially in the cases of dress clothing, which
exhibit complex dynamic deformations. Here, errors in the
middle and high-frequency components persistently remain
high throughout the learning process. In contrast, config-
uring SEGA with appropriate parameters (α = 2, τ = 2)
successfully achieves low errors in both the middle and
high-frequency components. This facilitates comprehensive
learning of both global and local deformation information.

Qualitative results are shown in Fig. 9. It can be observed
that the visual fidelity of garment deformation achieved

TABLE 2
Quantitative evaluation of vertex distance error across

spectrum-related factors. It presents the errors in low, middle, and high
frequency components (low/middle/high) for four different cases.

w/o garment type desc. w/ garment type desc.

w/o SEGA 2.89 / 1.06 / 0.24 2.25 / 0.88 / 0.21
w/ SEGA 2.62 / 0.76 / 0.19 1.81 / 0.51 / 0.18

through our method closely resembles with that of PBS.
Notably, our method excels in generating vivid and natural
wrinkles across various regions, as highlighted by the red
frame, under different motion conditions. More experimen-
tal results can be found in the supplementary materials and
video.

Independent validation of spectrum-related factors. In
our framework, alongside SEGA, we include a garment
type descriptor derived from the spectral decomposition
of the affinity matrix. Given the spectral nature of both
components, we employ conditional isolation validation to
evaluate the independent contribution of each component.
Specifically, we either remove or retain each factor to isolate
its effects: removing SEGA indicates the utilization of the
original GAT, whereas removing the garment type descrip-
tor eliminates the extraction of garment type knowledge,
relying solely on the information represented in the gar-
ment graph. Fig. 10 depicts these four scenarios. Viewing
from a vertical perspective, SEGA significantly enhances
the mid- and high-frequency details of the garment, notably
improving the depiction of folds. However, in the absence
of a garment type descriptor, the accuracy and plausibility
of these details may be compromised. From a horizontal
perspective, the garment type descriptor delivers global
information that primarily influences the overall shape of
the garment, such as the direction of the hem of the pink
dress. Overall, our complete method, as illustrated in the
lower-right corner of Fig. 10, integrates both global and
local information, achieving a more realistic representation
of garment behaviors.

Table 2 presents the average vertex distance error for
four different cases. The quantitative results indicate that
the two spectrum-related factors produce a mixed influence
across all three frequency ranges of garment deformation. In
particular, the low-frequency component of the garment ex-
hibits a larger deviation when the garment type descriptor is
absent. This is because the descriptor provides foundational
information about the garment type, and its absence results
in a lack of global responsiveness. In addition, the mid-
frequency portion of the deformation is more significantly
influenced in scenarios with and without SEGA. This ex-
periment highlights the critical need for incorporating both
spectral components to achieve precise garment deforma-
tion. Omitting either component compromises the accuracy
and realism of the simulation.

5.3 Evaluation on Temporal Skinning Weights

To demonstrate the effectiveness of our proposed tempo-
ral skinning weights, we perform ablation experiments on
key components for weight calculation. Table 3 presents a
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TABLE 3
Quantitative ablation study on temporal skinning weights. First, we verify the temporality of the skinning weights by removing a motion processor

and applying MLP to handle the current pose features. Then, we sequentially verify the target-awareness by removing the garment type descriptor,
applying graph pooling instead of our garment type descriptor, and using the garment type descriptor based on Euclidean distance. The values
before and after the slash symbol indicate the average vertex distance (cm), average angular deviation (◦) of vertex normals, and average edge

length (mm) between predictions and PBS.

Methods Long Dress Short Dress Long Jumpsuit Short Jumpsuit

w/o motion processor 3.28 / 19.7 / 0.66 3.15 / 18.8 / 0.54 3.02 / 17.6 / 0.55 3.08 / 18.1 / 0.51
w/o garment type parser 3.56 / 21.4 / 0.69 3.32 / 20.9 / 0.59 3.35 / 18.9 / 0.61 3.28 / 21.3 / 0.56

Graph pooling 3.04 / 18.2 / 0.54 2.89 / 16.1 / 0.51 2.78 / 14.6 / 0.46 2.73 / 14.2 / 0.47
Euclidean descriptor 3.16 / 18.8 / 0.59 3.08 / 16.4 / 0.52 2.88 / 15.8 / 0.48 2.79 / 15.5 / 0.44

Ours 2.46 / 14.2 / 0.42 2.37 / 13.3 / 0.27 2.20 / 10.5 / 0.30 2.13 / 11.7 / 0.25

Fig. 11. Qualitative ablation study on temporal skinning weights. Note
the different deformation trends and fold details in the various alter-
natives. The deformations generated using our full method are of the
highest quality and closer to the physics-based simulation.

quantitative analysis of five different scenarios, measured in
terms of average vertex distance and facet angular deviation
compared to the PBS data. The first row corresponds to
motion features processed by the MLP for the current frame
pose, without considering the previous motion state. This
analysis verifies the significance of the temporal nature
of the skinning weights. Subsequently, we experiment by
removing the garment type parser, causing the resulting
graph features to lose the global knowledge of the garment
type. This change heavily hampers the model’s ability to
generalize effectively. It becomes evident that both of the
aforementioned alternatives yield deteriorated deformation
outcomes, marked by increased prediction errors. Next,
we implement a global graph pooling for global garment
feature extraction, as stated in [60]. This strategy moder-
ately enhances prediction accuracy compared to cases where
no global information is available. Additionally, we main-
tain the network structure without changes and substitute
Euclidean distance for geodesic distance to construct the

affinity matrix, resulting in new garment type descriptor.
However, due to the limitations of this global description
in maintaining invariance and robustness in the presence
of garment bending, it results in deformation errors that
remain large. The final row corresponds to our full method,
which attains the lowest error, providing further evidence of
the beneficial nature of the proposed target-aware temporal
skinning weights.

We further report the qualitative comparison in Fig. 11.
As observed, when the motion processor fmo1 is absent,
the generated skinning weights contain information solely
about the current pose. This results in a weaker representa-
tion of dynamic deformation, as highlighted in the red frame
in the first row. It is worth noting that we have only removed
fmo1 responsible for generating skinning weights, while the
other motion processor fmo2 for generating the blend shape
remains unchanged. This allows the blend shapes to com-
pensate for some deformation deviations arising from dy-
namics. The case where both motion processors are removed
will serve as a baseline and be compared in the Sec. 5.4.
Additionally, in the absence of garment type descriptor, gar-
ments appear smoother and lack fine details. Some gener-
ated wrinkles appear unusual and do not faithfully capture
the clothing inherent features. To address garment meshes of
diverse types, encoding garment types with a global graph
pooling is a common strategy. However, this approach may
introduce a quality gap when compared to physics-based
simulations, because compressing the vertices in spatial
domain does not accurately characterize different garments.
Notably, the use of Euclidean-based descriptors leads to ap-
parent collision artifacts in the results. This may be because
the bending-invariant geodesic distance is more suitable
for describing garment types and shapes than the spatial
distance. In summary, our proposed target-aware temporal
skinning weights excel not only in terms of accuracy but
also in delivering qualitatively superior outcome compared
to alternative solutions.

5.4 Comparison to State-of-the-Art Methods
We evaluate our method against recent state-of-the-art
learning-based deformation approaches, mainly including
SNUG [61], NCS [12], SwinGar [58], and HOOD [63]. We
also implement a plain GAT-based network as a baseline for
comparison.

Replication details. We provide a thorough discussion
of essential techniques and implementation details em-
ployed when replicating other methods. These techniques
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Fig. 12. Qualitative comparison for different state-of-the-art methods with different kinds of motions. Our approach is capable of generating high
quality deformations with fine-scale details.

TABLE 4
Comparison with state-of-the-art methods in terms of dynamic effects,

model generalization, batch support, and running time. Running
performance is reported as frames per second (fps). Notably, except for

HOOD [63], all other methods achieve hard real-time performance.

Methods Dynamic Generalization Batch
Support Speed

SNUG [61] ! % ! 1340.4

NCS [12] ! % ! 853.9

SwinGar [58] ! ∆ ! 307.8

HOOD [63] ! ! % 13.1

PlainGAT % ! ! 638.5

Ours ! ! ! 503.4

could be crucial for successfully reproducing the best results
of previous studies.

In the case of SNUG, we find the deformation results
may be ill-posed using the original inertial force loss, where
Mt−1 and Mt−2 are calculated from {θt−1, θt−2} and

Fig. 13. Failure case of SwinGar. When the human body becomes
narrower, not commonly seen in the dataset, SwinGar may exhibit a
distinct interpenetration.

{θt−2}, respectively. Based on the original idea presented in
their paper [61] and related discussions in [12], we disable
the gradient of Mt−1 − Mt−2 when computing inertia
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force which means the gradients of the loss calculation
point inwards closing to the pivot, allowing SNUG to better
simulate dynamics.

In NCS implementation, we find that the technique
of transferring and smoothing body blend weights signif-
icantly influences training convergence and deformation
effects. For longer garments such as long skirts, we take
the body joints around the feet into consideration when
transferring body blend weights, enhancing the blend skin-
ning effect. Additionally, several unsupervised loss func-
tions integrated into NCS exhibit a wide value range, re-
quiring flexible balancing during training, depending on the
garment type. In practice, especially for trousers and long
skirts, empirical evidence suggests that initially minimizing
the influence of collision and inertial force losses (from
around 1/10 unit) and gradually increasing their impact
(up to around unit) in line with stretch and shear conditions
effectively enhance the dynamic effects of complex garments
and improve convergence stability.

The stage2 of SwinGar, designed to generate detailed
deformations, substantially inflates GPU resources and ne-
cessitates manual memory management. Without imple-
menting theoretical enhancements, it appears unfeasible to
simplify the network structure within the SwinGar frame-
work without compromising its detail generation ability. For
HOOD, the primary challenge lies in their assignment of
several features and constraints to a single vertex, which
necessitates the use of heterogeneous graph structures and
requires ongoing adjustments during the training process.
Consequently, their method lacks support for batch infer-
ence within current deep learning frameworks, i.e., only one
pose sequence is processed in a batch. The cloth model is
the Saint Venant Kirchhoff (StVK) elastic material model
for SNUG, NCS, and HOOD. For the PlainGAT baseline,
we use our network framework with the original GAT
block and replace the two motion processors with MLP-
based processors similar to [60], consequently lacking the
assurance of fine-grained details and cloth dynamics.

Method capacity. A comprehensive analysis of defor-
mation characteristics, model generalization to new targets,
batch support, and timing performance is provided in Table
4. The check mark indicates full ability, X mark signifies
a lack of ability, and triangle suggests a limited ability.
Our method stands out by achieving detailed and realistic
clothing deformations for arbitrary garments, irrespective
of their topologies and vertex counts. This generalization
enhances the applicability of our approach in scenarios
demanding diverse garment types, like virtual try-on.

In our comparative analysis of different methods’ run-
ning times, we measure the average time taken to trans-
form raw pose data (e.g., axis-angles or quaternions) into
deformed body and garment meshes within the test dataset,
parallelized on GPU. This provides an accurate represen-
tation of the expected running times in real applications.
SNUG emerges as the fastest due to its concise, lightweight
network design, with most computations occurring within
linear operations and temporal processing. Despite using
identical neural network structures, inputs, and outputs as
in the original NCS implementation, we note a runtime
increase of over 30%. This discrepancy may be attributed
to the backend architecture of deep learning frameworks,

leading us to directly report the time performance from the
original paper.

Moreover, SNUG and NCS, which do not account for
garment generalization, exhibit faster performance and con-
sume less computing resources than other methods. This
leads us to the case of SwinGar, which, due to its intricate
detail-adding graph processing modules, may struggle to
achieve real-time performance on typical computing re-
sources with 8 or 12GB GPU memory given its substan-
tial average GPU footprint of 10.15GB. Meanwhile, the
GPU footprints of HOOD and our method, both capable
of garment generalization, are significantly lower at 3.67
and 4.82GB, respectively. However, HOOD’s inability to
process data sequences in batch restricts it from achieving
hard real-time performance. Considering that high-quality
physics simulations can achieve dozens of frames per sec-
ond, achieving only a dozen fps diminishes the significance
of employing neural networks. In response to these con-
straints, by enhancing the spectral learning capability of pa-
rameterized layers, our method constructs an efficient and
relatively lightweight network, achieving a performance
comparable to that of NCS.

Qualitative evaluation. Qualitative results are included
in Fig. 12. We show samples for different body motions:
touch high (samples a and b), jumping (samples c and d),
dancing (samples e and f ), and swinging (samples g and h).

Among the five methods we compared, PlainGAT
demonstrates the poorest performance. While it utilizes a
skinning pipeline, it lacks mechanisms for detail enhance-
ment and temporal information integration, which results
in deficiencies in both dynamics and detail.

SNUG, NCS and SwinGar exhibit relatively acceptable
results. However, in scenarios involving rapid movements
with loose-fitting garments, the fixed blend weights of
SNUG results in a more body-flattering but dynamically
constrained effect around the loose areas of the dress hem-
line, as demonstrated in samples g and h. NCS demon-
strates enhanced dynamics in deformation yet falls short
in capturing detailed wrinkles, as evidenced in samples
a, c and h. Central to this approach is an unsupervised
learning framework inspired by physically based simula-
tion. Although the correct implementation of this model
ensures a meaningful capture of temporal information, it
still does not break through the spectral limitations inherent
in neural networks, resulting in an inability to accurately
estimate realistic details. Moreover, both SNUG and NCS
models are garment-specific, requiring the training of a new
model for each garment type. This limitation narrows their
applicability across different scenarios.

SwinGar, on the other hand, generally produces realis-
tic results for unseen garments. However, its performance
tends to degrade with extreme body shapes or poses due
to its failure to adjust skinning weights for target changes.
For example, substituting a thin human body with narrower
shoulders in samples a and b results in sleeves deforming
through the arms, as shown in Fig. 13. HOOD involves
adding details on a coarse basis, where the coarse deforma-
tion is derived from body weights. However, this additive
processing can result in certain garment regions lacking
realism, as seen in the artificial appearance of hemline area
in sample c and d. We speculate that this may be due to a
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Fig. 14. Comparison to SSCH [35]. Our approach occasinally encoun-
ters collision issues; however, it produces more natural deformations
with detailed wrinkles.

lack of consistency constraints on acceleration predictions.
In contrast, our method exhibits enhanced flexibility in

generating dynamic wrinkles in the hem region, thanks to
our two main contributions: the introduction of a spectrum-
enhanced strategy and the target-aware temporal skinning
weights. Additionally, we incorporate a partially unsuper-
vised loss, which together ensure superior deformation re-
sults. More results of continuous frames can be found in the
supplementary video. Upon evaluating a variety of motions
and garments, our method consistently ensures hard real-
time garment deformation through a unified model, while
delivering high-quality details and dynamic effects.

Collision discussion. As shown in the above examples,
our approach effectively generates reliable deformations in
most test cases. However, even with collision constraints,
it does not ensure complete collision avoidance, especially
when different body parts are in close proximity. On the
other hand, the SSCH method [35] more effectively prevents
collisions by utilizing a diffused human model. While this
approach offers better collision prevention, its reliance on a
diffuse representation restricts the range of dynamic defor-
mations that can be captured during inference, often leading
to poorer dynamics and less richness in detail.

6 CONCLUSIONS AND FUTURE WORK

We presented a graph learning-based framework for 3D gar-
ment animation, which offers powerful generalization ca-
pabilities, enabling the efficient generation of dynamic and
intricate garment deformations. We commence with an in-
depth analysis of the spectral properties of neural networks
and clothing deformation, culminating in the proposal of a
spectrum-enhanced deformation network. This innovation
amplifies the learning of clothing details and opens up new
avenues for controlling spectral bias in learning mesh-based
simulation. Additionally, we leverage the efficiency of blend
skinning and design the target-aware temporal skinning
weights. The weights incorporate multi-source information
from the garment, human body, and motion sequences,
thus achieving dynamic deformations. Our approach offers
extensive applicability and scalability, making it adaptable
to a diverse range of costume animation scenarios.

While our method demonstrates unique advancements,
several limitations remain to be addressed in future re-
search. Firstly, similar to many state-of-the-art approaches,
our model has not yet resolved the self-collision problem.
Self-collision may occur in extreme cases with extensive
bending. A promising way for future exploration involves

formulating this problem into a loss function that auto-
matically penalizes vertices with penetrations. Secondly,
concerning garment-body collisions, our method employs
a loss term during optimization, which may not always
be effective with unseen data. Currently, this issue is ad-
dressed through post-processing steps [36]. Future work
may involve the development of an end-to-end collision-free
garment deformation prediction system. Thirdly, although
Blender offers the capability to automate simulations, the
process of preparing diverse types of training data and filter-
ing out problematic data still demands considerable manual
effort. One of the future directions worth exploring is how
to keep the benefits of straightforward convergence found
in supervised learning, while also minimizing the data
preparation workload, drawing inspiration from the state-
of-the-art unsupervised methods [12], [61], [63]. Finally, our
method is limited to SMPL models as the human body, as
it relies on well-defined parameterized human bodies to
obtain necessary body shape knowledge. In the future, we
aim to explore more versatile description methods for both
human bodies and garments.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural
Science Foundation of China (Nos. 62402021, 62403017,
U2233211), the Beijing Natural Science Foundation (Nos.
4244088, 4232017), and the JSPS KAKENHI (No. 25K15401).

REFERENCES

[1] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson,
“Physically based deformable models in computer graphics,”
Comput. Graph. Forum, vol. 25, no. 4, pp. 809–836, 2006.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1111/j.1467-8659.2006.01000.x

[2] J. Li, G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G. E.
Brown, and L. Boissieux, “An implicit frictional contact solver for
adaptive cloth simulation,” ACM Trans. Graph., vol. 37, no. 4, 2018.
[Online]. Available: https://doi.org/10.1145/3197517.3201308

[3] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann, “Joint-
dependent local deformations for hand animation and object
grasping,” in Proc. Graph. Interface, 1989, pp. 26–33.
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S. M. Seitz, “Estimating cloth simulation parameters from video,”
in ACM SIGGRAPH Symp. Comput. Animat., 2003, pp. 37–51.

[31] C. Stoll, J. Gall, E. de Aguiar, S. Thrun, and C. Theobalt,
“Video-based reconstruction of animatable human characters,”

in ACM SIGGRAPH Asia, 2010. [Online]. Available: https:
//doi.org/10.1145/1866158.1866161

[32] S. Yang, J. Liang, and M. C. Lin, “Learning-based cloth
material recovery from video,” in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 4393–4403. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/ICCV.2017.470

[33] J. Liang, M. Lin, and V. Koltun, “Differentiable cloth simulation for
inverse problems,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
2019.

[34] M. Mihajlovic, Y. Zhang, M. J. Black, and S. Tang, “LEAP: Learning
articulated occupancy of people,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2021, pp. 10 456–10 466.

[35] I. Santesteban, N. Thuerey, M. A. Otaduy, and D. Casas, “Self-
supervised collision handling via generative 3D garment models
for virtual try-on,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2021, pp. 11 758–11 768.

[36] I. Santesteban, M. Otaduy, N. Thuerey, and D. Casas, “ULNeF:
Untangled layered neural fields for mix-and-match virtual try-
on,” in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022, pp. 12 110–
12 125.

[37] X. Pan, J. Mai, X. Jiang, D. Tang, J. Li, T. Shao, K. Zhou, X. Jin,
and D. Manocha, “Predicting loose-fitting garment deformations
using bone-driven motion networks,” in ACM SIGGRAPH, 2022.
[Online]. Available: https://doi.org/10.1145/3528233.3530709

[38] M. Zhang, D. Ceylan, and N. J. Mitra, “Motion guided deep
dynamic 3D garments,” ACM Trans. Graph., vol. 41, no. 6, 2022.
[Online]. Available: https://doi.org/10.1145/3550454.3555485

[39] A. H. Rasheed, V. Romero, F. Bertails-Descoubes, S. Wuhrer,
J. Franco, and A. Lazarus, “A visual approach to measure
cloth-body and cloth-cloth friction,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 44, no. 10, pp. 6683–6694, 2022. [Online].
Available: https://doi.org/10.1109/TPAMI.2021.3097547

[40] P. Guan, L. Reiss, D. A. Hirshberg, A. Weiss, and M. J. Black,
“DRAPE: Dressing any person,” ACM Trans. Graph., vol. 31,
no. 4, 2012. [Online]. Available: https://doi.org/10.1145/2185520.
2185531

[41] I. Santesteban, M. A. Otaduy, and D. Casas, “Learning-based
animation of clothing for virtual try-on,” Comput. Graph.
Forum, vol. 38, no. 2, pp. 355–366, 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13643

[42] T. Y. Wang, D. Ceylan, J. Popović, and N. J. Mitra, “Learning
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and Y. Bengio, “Graph attention networks,” in Proc. Int.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, SEPTEMBER 2023 18

Conf. Learn. Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=rJXMpikCZ

[89] T. Li, R. Shi, and T. Kanai, “DenseGATs: A graph-attention-based
network for nonlinear character deformation,” in Proc. Symp.
Interactive 3D Graph. Games, 2020, pp. 5:1–5:9.

[90] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Discrete Har-
monic Analysis: Representations, Number Theory, Expanders, and the
Fourier Transform. Cambridge University Press, 2018, vol. 172.

[91] H. Federer, Geometric measure theory, 3rd ed. Springer Berlin,
Heidelberg, 1996.

[92] Y. Katznelson, An introduction to harmonic analysis, 3rd ed. Cam-
bridge University Press, 2004.

[93] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping
using the nystrom method,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 26, no. 2, pp. 214–225, 2004.

[94] H. Bertiche, M. Madadi, and S. Escalera, “CLOTH3D: Clothed 3D
humans,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 344–359.

[95] Carnegie-Mellon, “CMU graphics lab motion capture database,”
http://mocap.cs.cmu.edu/, 2010, accessed: 2023.

Tianxing Li received her Ph.D. degree in
graphic and computer sciences from the Uni-
versity of Tokyo, Tokyo, Japan, in 2021. She
is currently a lecturer in the College of Com-
puter Science, Beijing University of Technology,
Beijing, China. Her current research interests
include computer animation, visualization, and
pattern recognition.

Rui Shi received his Ph.D. degree in graphic and
computer sciences from the University of Tokyo,
Tokyo, Japan, in 2022. He is currently a lecturer
in the School of Information Science and Tech-
nology, Beijing University of Technology, Beijing,
China. He served as a visiting researcher in
the Department of General Systems Studies,
the University of Tokyo. His current research in-
terests include explainable artificial intelligence,
computer animation, and visualization.

Qing Zhu received her Ph.D. degree in elec-
tronic information and communication from
Waseda University, Tokyo, Japan, in 2000. She
is currently a professor in the College of Com-
puter Science, Beijing University of Technology,
Beijing, China. Her research interests include
multimedia information processing technology,
virtual reality technology, and information inte-
gration technology.

Liguo Zhang received his Ph.D. degree in con-
trol theory and applications from the Beijing Uni-
versity of Technology (BJUT), Beijing, China, in
2006. Since 2014, he has been a Full Professor
with the School of Electronic Information and
Control Engineering, BJUT. He is currently the
Deputy Director of the School of Information Sci-
ence and Technology, BJUT. His research inter-
ests include hybrid systems, intelligent systems,
and control of distributed parameter systems. He
is an Associate Editor for the IMA Journal Mathe-

matical Control and Information and the Guest Editor of the International
Journal of Distributed Sensor Networks.

Takashi Kanai received his Ph.D. degree in en-
gineering from the University of Tokyo in 1998.
He is a professor in the Graduate School of Arts
and Sciences, the University of Tokyo, Tokyo,
Japan. His research interests include geome-
try processing and physics-based animation in
computer graphics. He is a member of ACM,
ACM SIGGRAPH, IIEEJ (the Institute of Image
Electronics Engineers of Japan), and IPSJ (In-
formation Processing Society of Japan).


