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Frequency-Divided Learning of Fine-Grained
Clothing Behavior via Flexible Dynamic Graphs

Tianxing Li, Rui Shi, Takashi Kanai, Qing Zhu

Abstract—Despite significant advancements in neural simula-
tion techniques for clothing animation, these methods struggle
to capture the dynamic details of garments during movement.
This limitation restricts their applicability in scenarios where
high-quality garment deformation is essential. To address this
challenge, we introduce a novel graph learning-based approach
to enhance deformation realism through designed mechanisms
for mesh information propagation and external optimization
strategies during model training. First, we address the issue
of over-smoothing common in conventional graph processing
techniques by introducing a flexible message-passing method.
This approach effectively manages node interactions within
the mesh, thereby improving the expressiveness of the model.
Furthermore, acknowledging that uniform model supervision
typically neglects high-frequency details during optimization,
we analyze the spectral properties of clothing meshes. Based
on this analysis, we introduce a frequency-division constraint
aligned with the characteristics of different frequency bands,
which aids in precisely controlling the generation of details. Our
model further integrates self-collision and other physics-aware
losses, enabling the learning of generalized and fine-grained
dynamic deformations. Extensive evaluations and comparisons
demonstrate the effectiveness of our approach, showing notable
improvements over existing state-of-the-art solutions.

Index Terms—Clothing deformation, frequency division, graph
message-passing, physical-informed learning.

I. INTRODUCTION

LEARNING 3D clothing behavior for digital characters is
a crucial technique across various industries, including

video games, films, e-commerce, and the metaverse. Efficient
simulation of high-quality clothing has always been a key
goal for researchers in computer graphics, as it significantly
increase interactivity and immersion. Traditional skinning
based methods (e.g., linear blend skinning [1], dual quaternion
skinning [2]) and pose space deformation [3] simplify garment
deformation by interpolating vertex positions according to
skeletal movements. While these approaches are straightfor-
ward and quick, they always struggle to produce realistic
dynamics and details. In contrast, physics-based simulation
[4]–[6] leverages fundamental physics principles to generate
plausible results. However, the high computational demands
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of these simulations often restrict their use in real-time appli-
cations.

Owing to advancements in artificial intelligence technology,
learning-based approaches [7], [8] are demonstrating potential
in enhancing both efficiency and quality in different types
of real-world applications [9], [10]. State-of-the-art methods
covering static [11] to dynamic deformations [12]–[14] and
ranging from supervised [15]–[17] to unsupervised strate-
gies [18]–[20] have substantially progressed by establishing
critical connections between influencing factors and target
behaviors through carefully designed models, thereby facil-
itating automatic deformation approximation. At the same
time, while some methods [21], [22] aim to provide unified
frameworks for garment animation, they often overlook the
inherent frequency-domain characteristics or fail to directly
control them, which are crucial for estimating detailed defor-
mations. Consequently, they struggle to consistently achieve
high-fidelity garment representations, particularly in capturing
fine-grained deformations and intricate details across diverse
motion scenarios.

This situation raises a critical question: How can models
for approximating clothing deformation reliably produce fine-
grained details? The garment mesh can be represented as a
graph, where nodes correspond to mesh vertices and edges
define the connections between them. By treating the attributes
(features) of the mesh as signals defined over the graph, their
spectral properties can be analyzed through graph frequency
decomposition. Similar to signals commonly observed in
physical systems, low-frequency components typically exhibit
significantly higher energy compared to their high-frequency
parts. Therefore, when a generic neural network processes this
signal, the high-frequency details can easily be overwhelmed
by the low-frequency contents, resulting in a biased repre-
sentation of different frequency bands. This issue is partic-
ularly pronounced in most graph neural networks (GNNs)
[23]–[25], which tend to induce over-smoothing because of
their inherent low-pass filtering effect during neighborhood
aggregation. Studies in [26] and [22] have also highlighted
this issue and proposed solutions. The former abandons the
use of GNNs, opting instead for multi-perceptron (MLP) lay-
ers, which compromises the generalization capabilities of the
model. Conversely, the latter employs spectral normalization
to control the Lipschitz constant of the graph-based model,
indirectly mitigating bias but not achieving direct control of
the finer details.

In this work, we introduce a novel, learning-based, gen-
eralized framework designed to enhance the estimation of
detailed clothing deformations in animation. The key to our
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success lies in proposing strategies that address the often-
overlooked high-frequency details, focusing on both the in-
trinsic properties of the neural network (i.e., the way graph
information is processed within networks) and the external
constraints during training (i.e., objectives imposed externally
on the network’s output). Intrinsically, we benefit from the
abilities of graph attention networks to deal with irregular
mesh information, while also recognizing the issue of over-
smoothing in message-passing due to the feature aggrega-
tion way. To bridge this gap, we develop a graph attention
mechanism with the flexibility that dynamically adjusts fea-
ture homogenization or heterogenization during propagation,
thereby enhancing the expressiveness of the model. Exter-
nally, we find incorporating a supervised optimization process
can simplify the complexity of parameter tuning inherent
in purely unsupervised learning, because supervised losses
could provide clear, goal-oriented guidelines during training.
However, uniform error metrics (e.g., directly constraining
vertex position errors) tend to under-penalize high-frequency
imperfections since larger errors in low-frequency components
overshadow them, prompting the network to prioritize these
discrepancies. This scheme might yield numerically favorable
results, but it does not guarantee the visual completeness of
details. To address it, we propose a frequency division strategy
for meshes that decomposes clothing deformations into distinct
frequency components. By analyzing these components, we
design the frequency-division losses that directly control and
optimize each frequency band.

To sum up, our main contributions are threefold:
• Flexible graph information propagation mechanism.

We introduce a general method for feature processing
in arbitrary clothing meshes. Unlike traditional GNNs
that function as low-pass filters, our approach overcomes
feature smoothing limitations by enhancing feature vari-
ability during message-passing, thereby improving model
performance.

• Direct control over the garment detail generation.
From a frequency domain perspective, we introduce a
frequency-division constraint. This enables active control
over different deformation frequency components, ensur-
ing that personalized details are effectively captured and
not overlooked.

• Generalized physics-aware deformation method. In
addition to applying frequency-division loss for close
alignment with the ground truth, we incorporate physics-
inspired unsupervised losses like self-collision to enhance
model realism. Our approach is applicable to a diverse
range of garment topologies and supports personalization
needs.

We demonstrate the superiority of our proposal through com-
prehensive validation and comparison with the state-of-the-
art methods. Furthermore, our analysis and solutions can
offer useful insights for 3D generation tasks, extending their
applicability beyond clothing simulation to broader contexts.

II. RELATED WORK

Physics-based simulation models clothing behavior by
applying fundamental laws of physics, including gravity, elas-

ticity, friction, based on the intrinsic properties of materials
involved. To enhance the precision of these simulations, ad-
vanced techniques such as time integration [27], [28], col-
lision handling [29], [30], mechanical modeling [31], [32],
differentiable simulation [33], [34], and yarn-level simulation
[35], [36] have been proposed. Although these methods yield
impressive results, they also present significant computational
challenges, limiting their application in real-time scenarios.
Recently, research has focused on leveraging GPU paralleliza-
tion [37], [38], refining coarse meshes with additional details
[39], [40], and employing projective dynamics [41], [42] to
enhance simulation efficiency. However, these advancements
still require considerable expertise and time for parameter
tuning. Consequently, despite the progress made, a number of
technical requirements tend to make these methods unsuitable
for large-scale clothing simulation where rapid and scalable
solutions are necessary.

Learning-based methods provide efficient alternatives to
physics-based simulations, addressing challenges in automa-
tion and customizability. Early works, such as pose space
deformation [3], laid the groundwork for learning parametric
deformations, which have since expanded to body shapes [11],
poses [43], [44], fit [16], clothing design [26], [45], and sizes
[46]. Proxy-based methods [47] improve efficiency by gen-
erating low-resolution proxy meshes with optimized skinning
weights to drive high-resolution cloth animations, while super-
resolution approaches [48] enhance wrinkle details and main-
tain spatial-temporal coherence with interleaved simulation-
correction frameworks. Other studies refine garment simula-
tion accuracy through realistic wrinkle modeling [49], pixel-
based data-driven frameworks [50], and texture-based geo-
metric recovery [51], alongside physics-aware learning for
physical plausibility [52], [53]. Recent advances include self-
supervised garment generation and draping [54], shape and
deformation priors for recovery [55], and differentiable simu-
lation for garment optimization [56].

Several studies leverage GNNs for improved generalization
in modeling articulated characters by generating skinning
weights and blend shapes [57]–[60]. To capture high-quality
cloth animation details, methods drape garments over SMPL
[61], with GarNet [62] introducing a two-stream PointNet-
based architecture for modeling body-cloth interactions. Mesh-
based frameworks [13], [15] and graph U-Net [11] focus on
deformation approximation but face challenges with general-
ization to new meshes or poses. SwinGar [22] advances dy-
namic deformation using temporal mesh graphs but struggles
with achieving detailed physical realism.

In another promising line, researchers have reframed solv-
ing equations of motion in physics-based simulations as an
optimization problem, employing self-supervised methods to
eliminate the need for ground truth data [18]–[20], [63].
While effective, these approaches struggle with generalizing to
diverse clothing meshes. HOOD [21] introduces a hierarchical
graph-based solution to address this but faces challenges
with runtime efficiency due to complex feature dependencies.
Despite advancements, key issues remain, including tuning
physical parameters in unsupervised optimization and gener-
ating dynamic details across varied contexts.
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Fig. 1: Motivation for our study. The general message-passing
and uniform supervision in existing graph learning-based
methods limit the generation of high-quality details. Our
approach proposes flexible message-passing and frequency-
division supervision to overcome these limitations.

Motivated by existing works, this paper introduces a novel
learning-based approach to approximate fine-grained clothing
behavior (as depicted in Fig. 1). Unlike common methods
[13], [15], [22], [64] that use GNNs, our approach introduces
a flexible message-passing mechanism within the network
and incorporates frequency-division supervision as external
constraints to guide the training process, effectively mitigating
the issue of detail loss. These will be further elaborated in the
methodology section.

Spectral analysis is widely used in machine learning to cap-
ture high-frequency details and enhance performance across
domains. Fourier features [65] help model high-frequency
patterns in tasks like rendering and super-resolution [66], while
frequency decomposition improves reconstruction by focusing
on high-frequency residuals [67]. Periodic activations in im-
plicit neural representations [68] advance 3D reconstruction
by capturing fine geometric structures, and frequency-aware
techniques sharpen depth estimation through high-frequency
supervision [69]. In this paper, we propose a novel frequency-
division constraint for the clothing domain, the first to apply
frequency decomposition for independently supervising fre-
quency components in garment deformation, enabling precise
learning of fine details.

III. METHODOLOGY

We consider a 3D garment mesh template with vertices
T̄ ∈ RN×3 and faces in its rest pose, where N is the vertex
count. Additionally, we use a SMPL body in the rest pose,
consisting of Nb vertices, which is parameterized by shape
parameters β ∈ R|β| and pose parameters θ ∈ R|θ|. A motion
sequence φt = {θ(t−m), . . . , θt} ∈ R|θ|×(m+1), spanning from
time t − m to t, is also provided. Our goal is to develop a
learning framework that links these elements to the resulting
clothing behavior. The pipeline is schematically summarized

in Fig. 2. Initially, we process each source of information sep-
arately. Body attributes, including shape parameters β ∈ R|β|
and vertex-to-joint distances Dis ∈ RNb×S (where S denotes
the number of body joints), are encoded using MLP layers,
while motion features φt are processed by gated recurrent
unit (GRU) layers. For the garment mesh, we model the
complex geometric changes in its deformed state by regarding
it as a graph structure composed of vertices and edges. In
this graph, mesh vertices are treated as nodes, and the edges
correspond to the original mesh connectivity between pairs
of vertices. Specifically, the graph is defined as G = (V, E),
where V = {v1, ..., vN} represents the feature set of all N
vertices, and E denotes the edges derived from the mesh, which
remain unchanged during the deformation process. Each node
is assigned features vi such as vertex positions, normals, and
distances to body joints, all of which are then processed using
the designed FlexiGAT composed of graph attention layers
(detailed in Sec. III-A).

Subsequently, the multiple encoded features are fused into a
comprehensive graph representation that efficiently computes
the dynamic skinning weights Wt for the garments. The
blend shapes Bt, crucial for capturing temporal changes, are
produced through additional graph attention layers. Following
the application of the skinning function, the dynamic garment
mesh M̃t can be modelled as:

M̃t(T̄ , β, φt) = W
(
T t(T̄ , β, φt), J,Wt(T̄ , β, φt)

)
, (1)

T t(T̄ , β, φt) = T̄ +Bt(T̄ , β, φt), (2)

where the blend shapes Bt are added to the garment mesh
template vertices T̄ to form T t, which is then deformed using
the skinning function W (·), incorporating dynamic skinning
weights Wt and joint transformations from the joint location
J . Building upon the generated M̃t, we aim to enrich the
garment deformations with nonlinear details. To achieve this,
we further construct the mesh as a graph, embedding vertex ve-
locities, normals, and vetex-joints distances, and then process
it through graph attention layers of FlexiGAT. This procedure
outputs a refinement ∆t, allowing the final deformation of the
garment to be expressed as: Mt = M̃t + ∆t.

In terms of optimization, to facilitate effective learning, we
analyze clothing behavior through a spectral perspective as
discussed in Sec. III-B. Based on this analysis, we formulate
a frequency-division loss function (Sec. III-C). This function is
employed alongside self-collision and other physically-aware
unsupervised losses to enhance model performance.

A. Flexible Graph Attention Mechanism

The transformation of clothing meshes in animation demon-
strates a complex process where information dynamically
flows through the edges between nodes within the mesh. To
effectively model this, the mesh can be conceptualized as a
graph G = (V, E) with N vertices, comprising a set of vertex
features V and edges E . In updating this information, most
GNNs follow the message-passing paradigm, where the repre-
sentation of each node is computed by recursively aggregating
and transforming the representations of its neighboring nodes.
Unlike other GNN architectures that assign equal importance
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Fig. 2: Overview of our method. We start by extracting features from the body, garment, and motion, which are then integrated
into a comprehensive graph. This graph is then processed to generate skinning weights and blend shapes, which are used to
create the dynamic garment mesh M̃t. Additional refinement process is also applied to enhance its details, leading to the final
garment deformationMt. Central to our approach is the message-passing mechanism of FlexiGAT and the model optimization
strategy, allowing multi-fold feature aggregation (see different colored arrows in the center) and employing frequency-division
losses for separate frequency band (i.e., low, middle, and high) supervision as shown in the right part.

to all neighbors, the integration of attention mechanisms (e.g.,
graph attention network, GAT [24]) has proven to enhance
generalization and adaptability. Specifically, the raw attention
coefficient e(l)ij at the l-th layer between node i and neighbor
j is given by:

e
(l)
ij = LeakyReLU

(
a(l)>[W (l)v

(l)
i ‖W

(l)v
(l)
j ]
)
, (3)

where v(l)i and v(l)j are the feature vectors of the nodes at layer
l, residing in Rd. W (l) ∈ Rd′×d is a learned transformation
matrix, a(l) ∈ R2d′ is a learned parameter, and ‖ represents
concatenation. To make the coefficients comparable across
different nodes, they are then normalized across all neighbors
j ∈ Ni:

α
(l)
ij = softmaxj(eij) =

exp(eij)∑
j′∈Ni

exp(eij)
. (4)

The matrix A(l) contains the entry α(l)
ij in the i-th row and j-th

column, representing the propagation operator in the message-
passing. Then, for a general GAT, the processing of a layer
can be expressed as:

V (l+1) = σ
(
A(l)V (l)K(l)

)
, (5)

where σ(·) is a nonlinearity function, K(l) can be regarded as a
1×1 convolution. Here, V (l) = [v

(l)
1 , ..., v

(l)
N ] denotes the graph

feature matrix at the l-th layer, and the output V (l+1) is the
updated graph feature matrix at the (l+ 1)-th layer. However,
since the propagation aggregator is non-negative, a limitation
arises: as information is propagated through multiple layers,
node features become increasingly indistinguishable, leading
to the frequently criticized issue of over-smoothing. To tackle

this, we propose a straightforward yet impactful modification
to the standard propagation operation:

V (l+1) = σ
((
P (l)I +Q(l)

(
A(l) − I

))
V (l)K(l)

)
= σ

(((
P (l) −Q(l)

)
I +Q(l)A(l)

)
V (l)K(l)

)
, (6)

where P (l) and Q(l) are the scalars learned at layer l that adjust
the influence of self and neighbors. This flexibility allows the
graph attention layer to function in various modes, which we
have termed FlexiGAT. For instance, when P (l) = Q(l) = 1,
Eq. (6) reverts to the standard GAT as in Eq. (5). When
P (l) = 1, Q(l) = 0, the update focuses exclusively on self-
features, isolating the node from its neighbors. If P (l) > Q(l),
the update process balances the node’s own features with
those of its neighbors, functioning as a blending mechanism.
Conversely, when P (l) < Q(l), the resulting operator has
negative diagonal entries and positive off-diagonal entries,
creating a sharpening effect that enhances feature distinctions.

Our FlexiGAT extends beyond the capabilities of the orig-
inal GAT, which, despite its multi-attention mechanism that
theoretically creates multiple propagation operators, is lim-
ited by its non-negative propagation weights. This inherent
characteristic leads to over-smoothing, a significant challenge
where node features become increasingly homogeneous across
the network as more layers are applied. In contrast, by inte-
grating flexibility into the propagation operators and allowing
for both negative and positive weights, our method supports
diverse scenarios and effectively counters the over-smoothing
problem, maintaining sharper distinctions and more dynamic
feature variations in message-passing than the single aggrega-
tion function of the original GAT.
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B. Spectral Analysis for Clothing Meshes

In addition to the challenges posed by efficient message-
passing, the issue of over-smoothing in clothing deformations
is also influenced by spectral bias. This bias refers to the
tendency of neural networks to preferentially learn lower-
complexity components during training, often neglecting in-
tricate geometric details. In the context of garment neural
simulation, this leads to missing essential wrinkles, leading to
unrealistic results. To address this issue, we begin to explore
the feasibility of dividing the mesh into distinct frequency
bands, which would allow for a more focused attention on
higher-frequency components. To do so, we first perform a
spectral analysis of the deformed clothing mesh.

Given a mesh object with N vertices, the spectrum of the
mesh graph is characterized by the eigenvalues and eigenvec-
tors of the Laplacian matrix. The Laplacian matrix is defined
as: L = D − C, where D = diag{d1, . . . , dN} is a diagonal
degree matrix, with each element di representing the number
of edges connected to vertex i. Here, C ∈ RN×N is the
adjacency matrix, which records whether there is an edge
between pairs of nodes, with entries Cij = 1 if there is an
edge, and Cij = 0 otherwise. Note that for a garment mesh, the
Laplacian matrix is computed only once based on the rest pose
topology and remains fixed during deformation. To standardize
the influence of varying vertex degrees on graph analysis, the
normalized Laplacian matrix Lnorm = D−1/2LD−1/2 is used.
This matrix is then decomposed spectrally as follows:

Lnorm = UΛU>, (7)

where U = [u1, . . . , uN ] is an orthonormal matrix with
eigenvectors, and Λ = diag{λ1, . . . , λN} contains the cor-
responding eigenvalues in non-decreasing order. Next, we can
extract different components of mesh using the corresponding
eigenvector elements. For the low-frequency band, we have:

X l = U lU l>X, (8)

where U l is the matrix containing the selected eigenvectors
corresponding to the low-frequency band. X is the vertices
of the garment mesh. X l denotes the low frequency vertex
positions. For the middle- and high- frequency band, we define
Xm and Xh as:

Xm = UmUm>X −X l, (9)

Xh = X − UmUm>X, (10)

where Um correspond to the middle-frequency elements of
the eigenvector U . Overall, X changes with the deformation
of the mesh, causing the frequency components X l, Xm,
and Xh to vary accordingly. The selection of U l and Um

is discussed in detail in Sec. IV-D. As shown on the right
side of Fig. 2, from top to bottom, the low-frequency part is
associated with the eigenvectors corresponding to the smallest
eigenvalues of the Laplacian matrix, capturing the global,
smooth variations of the mesh. The middle-frequency part is
crucial as it contains most of the detailed folds and wrinkles
in clothing, which are essential for realistic simulations. In
contrast, the high-frequency part, while capturing the finest
details, often includes details that are imperceptible to the

naked eye and can introduce unwanted noise. Therefore, our
simulation focuses more on the middle-frequency part to
mitigate spectral bias and ensure that significant geometrical
details are accurately represented.

C. Model Optimization

To effectively learn the clothing behvior, we introduce a
blend optimization scheme for the model. This strategy inte-
grates both supervised and unsupervised losses to address the
unawareness of physical information typically seen in purely
supervised models and the lack of control often associated
with purely unsupervised models.

Regarding the supervised loss, the conventional approach
typically measures errors by directly comparing predictions
with the ground truth. In this scenario, all frequency com-
ponents are supervised together, potentially biasing the model
learning. Despite diligent efforts to minimize error metrics, the
model may primarily enhance performance on low-frequency
components, as these are more prominent than high-frequency
components. As a result, middle- and high- frequency details
are often overlooked.

In response to these observations, and based on the spec-
tral analysis of the garment mesh discussed in the previous
subsection, we propose separately controlling the frequencies.
Specifically, for vertex position constraints, we employ the L2

norm. As an example, we consider the low-frequency band:
xl
i represents the position of vertex i within this band, and
xl,GT
i denotes the corresponding ground truth data. For the

middle- (xm
i , xm,GT

i ) and high-frequency parts (xh
i , x

h,GT
i ), these

values are no longer the vertex positions themselves but instead
represent relative displacements derived from the frequency
decomposition, as defined in Eqs. (9) and (10). The vertex
loss for different frequency bands is defined as follows:

Llv =
kv
N

N∑
i=1

‖xl
i − x

l,GT
i ‖2, (11)

Lmv =
kv
N

N∑
i=1

‖xm
i − x

m,GT
i ‖2, (12)

Lhv =
kv
N

N∑
i=1

‖xh
i − x

h,GT
i ‖2. (13)

To achieve the frequency-division control, we employ two
weight parameters to adjust the influence of the middle- and
high-frequency components respectively:

Lvert = Llv + kmvLmv + khvLhv, (14)

where kmv and khv are the balancing weights for the middle
and high-frequency bands. Experiment in Sec. IV-D will
indicate the effect of different weight settings on the results.

Regarding the self-collision, our observations indicate that
significant visual impacts typically occur at positions where
large folds are formed, such as in a pleated dress during
movement. To address these issues, we apply a repulsion
loss to vertices that exceed a predefined proximity threshold.
This approach is inspired by simulation studies of multi-
layered clothing [70]–[73]. The repulsion allows the vertices to
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maintain a safe distance from each other as folds are forming,
thus effectively preventing self-collisions. The loss function is
defined as follows:

Lsc =
ksc∑
i,j Ki,j

∑
i,j

Ki,je
−λdij , (15)

where λ is used to control the exponential decay rate. The
setting for this parameter needs to be determined based on the
ranges of other losses. For our case, λ is set to 8. dij is the
Euclidean distance between vertices i and j, scaled by a factor
of 100 to ensure the unit of measurement remains consistent
in centimeters. This loss function fundamentally introduces
repulsive forces between vertices using the relation matrix K.
Kij = 1 only if both of the following conditions are satisfied:
(i) the geodesic distance between vertices i and j in the
rest pose exceeds a threshold, and (ii) the Euclidean distance
between these two vertices is less than another threshold.
These conditions ensure that the repulsive force is applied only
when vertices that are initially geodesically distant become
undesirably close in Euclidean distance during deformation.
The thresholds are adjustable based on fabric properties and
are set here to 10 cm for geodesic distance and 2 cm for
Euclidean distance, respectively. If either condition is not met,
and no repulsive force is applied.

To more accurately model physically realistic behaviors,
we incorporate additional loss terms inspired by prior studies:
edge lengths [22], normal vector directions [62], garment-body
collisions [20], gravity [19], stretch [20], [27], [63], and shear
force [27]. Each term is controlled by specific weights: ke,
kn, kc, kg , ks, and kh. For detailed definitions of these terms,
please refer to the supplemental material.

IV. EXPERIMENTS

A. Implementation Details

Dataset. We collect a diverse array of garments from the
CLOTH3D dataset [44], human body models from SMPL [61],
and dynamic motions from the CMU Mocap dataset [74].
These elements are integrated to simulate garment-body inter-
actions using silk-like fabrics in Blender. Our training dataset
comprises 55 garment styles and nine distinct body shapes,
encompassing approximately 50,000 poses. The validation
dataset includes five garments and three body shapes, totaling
around 3,000 poses. Meanwhile, the test dataset contains 15
garments paired with randomly generated body shapes, ac-
counting for approximately 8,000 poses. We ensure there is no
overlap among these datasets to maintain their independence.
The supplemental material provides a comprehensive overview
of the full range of garment data utilized in our study.

Architecture. As depicted in Fig. 2, our framework com-
prises two primary stages: information processing and defor-
mation generation. In the first stage, body features are input
into MLP layers with the hidden feature size of [128, 256,
128] and tanh activation. The garment mesh graph is processed
using a three-layer FlexiGAT with feature sizes of [64, 64,
128], four heads, and tanh activation. Motion features are
handled by a three-layer GRU, each with a feature size of 128.
In the second stage, all processed features are initially fused

Fig. 3: Qualitative results of applying different graph process-
ing technologies.

together by multiplication to form a comprehensive graph.
Softmax is then applied to this graph to generate dynamic
skinning weights Wt. For generating the blend shape Bt,
which is inherently complex, the graph is further processed
through three additional layers of FlexiGATs with configura-
tions of [64, 32, 3] and four heads. This detail is omitted in
Fig. 2 for simplicity. Then, linear blend skinning is utilized
to generate the dynamic garment mesh M̃t, simultaneously
forming a garment graph that includes node velocity and other
features. This graph serves as the input for the detail correction
generator, which uses FlexiGAT layers with the hidden feature
size of [64, 64, 32, 32, 3] and four heads, to produce the final
deformation refinement ∆t.

Model training. For the initialization of linear layers, we
employ the geometric initialization method as stated in [75].
Conversely, the graph processing components are initialized
using the Kaiming initialization method [76]. For optimization,
we use the Adamax optimizer [77], with an initial learning rate
of 3e-3, and apply cosine annealing to decay the learning rate.

Our training strategy leverages a progressive transition
from supervised to unsupervised learning, capitalizing on the
strengths of both approaches. Initially, a randomly initialized
model is trained using supervised vertex and edge losses,
with coefficients kv = 100 and ke = 15 respectively. The
parameters kmv and khv for weighting the middle and high-
frequencies are 2 and 1.5 respectively. Once the vertex error
falls below 5 cm, the normal loss with kn = 50 is activated
to prevent over-smoothing and preserve wrinkle details.

We define an overfitting condition as less than 2.5% re-
duction in vertex error over 100 epochs. Upon reaching this
condition, the information processing parameters are frozen,
supervised loss weights are reduced by a factor of 0.1, and
the garment-body collision loss is introduced with kc = 1.5.
Further, decreasing the loss value below 0.5 triggers the
activation of the self-collision loss with ksc = 15.

As the model stabilizes, supervised loss weights are halved
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TABLE I: Quantitative deformation results. We measure five
error metrics: the average vertex distance Everts (cm), the
average angular deviation of vertex normals Evnorm (◦), that
of face normal Efnorm (◦), the relative edge length error Eedge
(%), and discrete Gaussian curvature error Ecurv between
predictions and ground truth data. The term “FreqDiv” refers
to the proposed frequency-division constraint.

Everts Evnorm Efnorm Eedge Ecurv

GAT+FreqDiv 3.06 19.33 21.49 11.21 0.041
LGAT+FreqDiv 2.49 16.16 18.12 10.25 0.037
FlexiGAT+w/o FreqDiv 2.53 17.64 19.87 10.31 0.038
FlexiGAT+FreqDiv (Ours) 2.28 13.62 14.96 8.94 0.029

again, and the gravity and cloth model losses are incorporated
with constants kg = 0.1, ks = 5, and kh = 2. This progressive
integration of unsupervised losses, after an initial supervised
phase, efficiently enhances convergence. Direct application
of unsupervised losses typically renders the learning process
highly unstable, often failing to converge when dealing with
the complexities of multiple garments and diverse motions.

B. Evaluation of Graph Processing Technologies

In this section, we compare our proposed graph processing
mechanism, FlexiGAT, with previous techniques: the original
GAT and the GAT with Lipschitz normalization (LGAT) as
implemented in SwinGar [22] to mitigate spectral bias. In this
experiment, the network structure and training strategy remain
constant, with only the graph layer type being altered.

Fig. 3 shows the qualitative results obtained using these
three graph processing methods across various garments and
poses. Visually, the deformation result of the original GAT
appears the coarsest, as it tends to smooth out the detailed
wrinkles of the garment that should otherwise follow move-
ment dynamics. This smoothing issue is a common prob-
lem with GAT and most GNNs, where the use of a non-
negative propagation operator (i.e., A(l) in Eq. (5)) during
message-passing acts like a low-pass filter. This results in poor
differentiation of node features and significant performance
degradation when multiple layers are stacked.

When incorporating Lipschitz normalization into GAT, it
controls the spectral properties of the weight matrices, sta-
bilizing learning and preventing the over-smoothing typical
in standard GAT implementations. By bounding the Lipschitz
constant, LGAT better preserves detailed features such as
folds and wrinkles, which are essential for accurate garment
deformation. Despite its potential, it does not completely
solve the problem of feature homogenization over multiple
layers. The normalization process may still fail to capture
minor but significant variations in node features, especially
in deep network architectures, resulting in visual effects that
occasionally suffer from a loss of detail or exhibit incoherent
bulging. This highlights the need for further refinement in
balancing feature smoothing and detail preservation in GATs,
particularly for complicated graph meshes.

Our FlexiGAT provides a dynamic adjustment in the in-
fluence shared between self and neighbor node features by

Fig. 4: Error of different frequency band w/ and w/o frequency
division. The top, middle, and bottom rows correspond to the
three garments displayed in Fig. 5.

tuning parameters P (l) and Q(l) in Eq. (6). This flexibility
allows for a better feature expressiveness, thereby enhancing
the performance in garment deformation approximation task.
Moreover, the quantitative evaluation is presented at the first
two rows and the last row of Tab. I. These results demonstrate
that, with all other conditions kept constant and only the
graph processing method changed, our approach achieves
significant improvements over the original GAT across as
well as GAT with Lipschitz normalization across various error
metrics. These consistent results across various geometric and
structural metrics validate FlexiGAT’s ability to effectively
capture complex relationships and produce accurate, reliable
predictions closely aligned with the ground truth.

C. Evaluation on Frequency Division

In this section, we perform an ablation study to assess
the impact of frequency division processing on deformation
results. By applying the frequency-division loss, we gain active
control over spectral information, which enhances the accuracy
of middle-to-high frequency deformations essential for realis-
tically producing garment wrinkles. To measure performance,
we maintain model weights at various stages and use these
weights to obtain deformation errors across different frequency
bands. As shown in Fig. 4, the first row corresponds to the
pink garment on the left in Fig. 5, the second row to the blue
garment in the middle, and the third row to the coral orange
garment on the right. Note that while the loss metrics are
computed separately for different garments, the model weights
used are consistent across all evaluations within the same
epoch. Our method handle various types of garments within
a unified model framework. Upon reaching training conver-
gence, we observe low-frequency errors ranging between 2
and 4 cm. We initially think that w/o frequency division would
give the lowest low-frequency error. However, contrary to
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Fig. 5: Qualitative results of w/ and w/o frequency division.
Applying frequency division loss to emphasize middle- and
high-frequency information significantly enhances the visual
quality of wrinkle generation.

Fig. 6: Deformation results corresponding to different fre-
quency bands. Using a lower vertex ratios, such as 1/40,
corresponds to a lower frequency band and results in smoother
clothing. Conversely, when the proportion reaches 1/4, nearly
all deformation information is accurately reproduced.

our initial hypothesis, the model employing the frequency-
division loss demonstrates superior overall performance. The
error curves reveal larger fluctuations in low-frequency error
with frequency-division loss compared to those without it. We
speculate that enhancing middle-to-high frequencies indirectly
influences the entire learning process, causing more fluctua-
tions in low-frequency convergence, which ultimately leads to
the improved model.

For the middle-frequency band, the introduction of
frequency-division loss significantly enhances the results,
which is essential for generating realistic wrinkles. In the
high-frequency band, models trained without the designed
loss typically exhibit an initial error increase followed by
a decrease. In contrast, our proposed solution leads to a
more consistent and gradual reduction in errors. Overall, the
error curves across various training stages demonstrate the
effectiveness of our frequency-division processing approach.

We also calculate the mean errors, shown in the last two
rows of Tab. I. The inclusion of the frequency-division loss
improves performance across all metrics compared to the

TABLE II: Quantitative deformation results across different
frequency-division loss settings.

Everts Evnorm Efnorm Eedge Ecurv

(1.5, 1.5) 2.31 14.23 15.98 9.28 0.029
(1.5, 2) 2.51 17.02 18.71 10.21 0.032

(1.5, 2.5) 2.57 17.21 19.19 10.44 0.034
(2, 2) 2.39 15.29 17.27 9.55 0.030

(2, 2.5) 2.54 17.68 19.23 10.13 0.036
(2.5, 1.5) 2.34 14.54 16.82 9.31 0.031
(2.5, 2) 2.42 16.67 19.04 9.37 0.031

(2.5, 2.5) 2.47 16.84 18.95 9.56 0.033
(2, 1.5) Ours 2.28 13.62 14.96 8.94 0.029

case without it. These results indicate that the direct con-
trol of different frequency bands can effectively emphasize
high-frequency details like wrinkles while maintaining over-
all accuracy, highlighting its critical role in enhancing fine-
grained surface deformation. Qualitative results, shown in Fig.
5, illustrate an intuitive contrast: without frequency-division
loss, the results appear smoother and many wrinkles are lost.
Conversely, our method retains finer and more realistic details.

D. Evaluation on Different Frequency Settings
In this section, we explore the effects of various frequency

settings on clothing simulation. Initially, we select specific
frequency bands by determining the number of eigenvectors
based on the vertex count. This selection process constructs the
matrix U , enabling the clothing deformations across different
frequency bands as shown in Fig. 6. Notably, when using only
1/40 of the vertex count, the garment appears very smooth,
nearly losing all detailed information. As we increase the ratio
to 1/20 or 1/30 of the vertex count, finer details and wrinkles
begin to emerge. Consequently, we establish 1/30 of the vertex
count as the threshold separating low and middle-frequency
bands. Further analysis involves examining ratios of 1/6, 1/5,
and 1/4 of the vertex count to differentiate between middle
and high frequencies.At 1/5 of the vertex count, a substantial
portion of middle-frequency wrinkles is effectively captured.
Thus, we choose 1/5 as the threshold between middle- and
high-frequency bands. These thresholds consistently perform
well across garments with varying vertex counts in the dataset.

Fig. 6 also reveals that while the low-frequency band is
relatively narrow, it contains the majority of the “energy,”
leading neural networks to predominantly focus on these
frequencies. However, for achieving refined deformation ef-
fects, it is essential to augment the representation in middle
frequencies to counteract spectral bias in GNNs.

Our frequency-division loss can optimize vertex position
information across various frequency bands. We consistently
maintain the weight of the low-frequency loss in Eq. (14) to
one, serving as a reference. For middle and high frequencies,
we assign different weights, i.e., kmv and khv , to adjust their
influence. The errors of the resulting models are shown in
Tab. II. Through a systematic grid search, the optimal weight
combination is identified as (2, 1.5). The experimental results
reveal that the key to achieving the desired effects lies in main-
taining the weight of the middle frequency while moderately
increasing the weight assigned to the high frequency.
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Fig. 7: Qualitative results of different frequency weights. While boosting high frequencies produces more wrinkles, it also
introduces high-frequency noise, such as jittering and bulging in zoomed-in regions.

Fig. 7 presents the deformation results, comparing the least
effective parameter pair (1.5, 2.5) with a moderately effective
one (2.5, 2), and our selected settings. It is evident that
overemphasizing the high frequencies leads to significant jitter
and noticeable bulging in the deformations, which can be
interpreted as high-frequency noise, markedly impairing the
visual quality. Even the deformation with moderate settings
also shows some bulging. Our chosen settings, however,
demonstrate visually optimal deformation results.

E. Evaluation on Self-Collision Loss

In this section, we evaluate the effectiveness of our self-
collision loss Lsc in Eq. (15) by excluding it from the total
losses. We utilize the Möller-Trumbore intersection algorithm
[78] to determine the self-collision ratio by identifying in-
tersections between edges and faces and counting only inter-
secting faces; multiple intersections with the same face are
counted once. To enhance computational efficiency, we im-
plement a k-d tree to pre-filter vertices exceeding a Euclidean
distance of 1.5 cm. Reasonable variations in this threshold
do not substantially alter our conclusions. On average, the
introduction of Lsc significantly decreases the self-collision
rate from 6.4‰ to 2.7‰. As demonstrated in Fig. 8, we
present line plots showing the rates (‰) of self-collision across
various garments and motions, accompanied by representative
qualitative comparisons. As observed, self-collision frequently
occur in areas where joints are clenched, such as armpits,
waists, and crotches, as well as near the loose folds, including
the bottoms of dress hems and trouser legs. In the absence
of Lsc, these specific areas tend to exhibit artifacts, adversely
affecting the visual quality from certain viewpoints. Our pro-
posed constraint effectively mitigates these issues by exerting a

TABLE III: Comparison with state-of-the-art methods in gar-
ment generalization, cloth model utilization, frequency control,
and inference speed (fps).

Clothing
Generalization

Physics
Awareness

Direct
Freq. Control

Inference
Speed

SwinGar ! % % 307.8
GAPS % ! % 370.4
HOOD ! ! % 13.4
Ours ! ! ! 312.6

repulsive effect on non-neighboring vertices that come within
proximity during movement. The proposed approach not only
improves quantitative metrics by 57.8% but also enhances the
physical plausibility in the neural clothing simulation.

F. Comparison to State-of-the-Art Methods

To further evaluate the capabilities of our method, we
conduct a comparative analysis with three state-of-the-
art learning-based clothing deformation methods, including
SwinGar [22], GAPS [63], and HOOD [21].

Property comparison is shown in Tab. III. A check mark
signifies the presence of a property, while a cross denotes
its absence. SwinGar, HOOD, and our model all share the
ability to generalize to different types of garments with a
single unified model. This is a convenient feature for practical
applications and represents a promising direction for exploring
the generality of neural simulations in clothing deformation.
GAPS demonstrates robust generalization to novel motions but
falls short in its ability to process diverse garments within a
unified framework.
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Fig. 8: Qualitative and quantitative evaluations on self-collision loss.

In terms of wrinkle generation, the integration of physics-
aware losses has a significant impact on the diversity of
deformations. SwinGar relies solely on supervised losses for
deformation learning, which confine its output largely within
the bounds of its training dataset. This limitation often leads to
an unnatural appearance and reduced diversity in deformation
results.

Our method differentiates itself from previous studies par-
ticularly during the training phase, where it leverages the
ability to adjust weights across different frequency bands, al-
lowing for a targeted emphasis on the information-rich middle-
frequency band crucial for capturing subtle and complex fabric
details. In contrast, conventional supervised losses typically
focus primarily on low-frequency information due to their
reliance on using complete vertex coordinates, which natu-
rally capture base deformations and result in over-smoothing
outputs. Consequently, other methods are unable to accurately
render complex wrinkle patterns that are essential for realistic
clothing simulations.

Regarding inference speed, both SwinGar and our method
use graph networks. Despite their complex structures, these
deep learning frameworks manage to achieve efficient multi-
frame parallel processing, enabling real-time performance.
In contrast, HOOD, although capable of handling different
garments and motions, requires velocity and acceleration data
from previous frame to inform deformations. This requirement
makes multi-frame parallel processing challenging and slows
down the inference process. On the other hand, the architecture
of the GAPS network is relatively simple, focusing primarily
on linear layers and gated recurrent units. This simplicity
allows for high-speed inference and supports real-time per-

formance, making it highly efficient. However, when dealing
with topology-varying clothing, the requirement to train each
object separately still leads to considerable time consumption.

Deformation results are shown in Fig. 9. SwinGar’s de-
formation learning is driven by simulation data, i.e., the
deformations that are mere extrapolations from the training
data distribution, leading to issues such as unnatural hemlines
in the apricot dress and strip-like wrinkles in the abdomen of
a purple jumpsuit (the second row of Fig. 9). GAPS, while
generally producing realistic deformation results, suffers from
a lack of detail, and emphasizing wrinkle-related clothing
model losses can destabilize inertial force convergence, pre-
senting a challenge in balancing multiple losses to achieve
optimal results. Different training modes significantly impact
the results. HOOD stands out for its temporal consistency and
stability, implementing dynamic deformations using velocity
and acceleration predictions, though its reliance on various
unsupervised physics-informed losses occasionally results in
crumpled appearances (the fourth row of Fig. 9). Our method,
by improving information propagation within the graph and
adjusting the information in different frequency bands, ef-
fectively mitigates the crumpled issues and over-smoothing,
showing the fine-grained details in qualitative results. More-
over, it achieves better accuracy and aligns more closely
with the ground truth. Compared to the spectrum-inspired
SwinGar, our method reduces the average vertex distance Everts
by approximately 0.2 cm and the average angular deviation
of vertex normals Evnorm by 3.69◦. Additionally, with the
introduction of self-collision unsupervised losses, our method
lowers the self-collision rate by 0.31‰ compared to SwinGar.
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Fig. 9: Comparison with state-of-the-art neural cloth simulation methods. Observe the natural and fine-grained details in our
generated deformations.

V. CONCLUSION

We have developed a novel solution for simulating the
clothing behavior of arbitrary meshes with an enhanced degree
of realism. Leveraging the generalization abilities of graph
neural networks, which good at processing irregular data, we
introduce a flexible graph information propagation mecha-
nism for the task of 3D mesh deformation. This mechanism
greatly improves the expressiveness of our model. To facilitate
effective model learning, we propose a frequency-division
loss to optimize individual frequency components directly,
thereby ensuring the generation of rich details. Moreover, we
incorporate self-collision and several unsupervised loss terms
based on physical properties together to further refine the

model’s performance and enhance the deformation plausibility.
Extensive evaluations demonstrate the effectiveness of our
approach. We believe our method makes an important step
in the field of deformation learning, achieving high fidelity
and efficiency in clothing simulation.

Our work still has a few limitations. First, our self-collision
constraint does not entirely prevent intersections among gar-
ment vertices. Specifically, it may not be effective in avoiding
certain edge-to-edge intersections or collisions that occur un-
der extreme poses. These issues might require additional post-
processing steps to achieve optimal results. Furthermore, while
our current framework is able to handle garments with varying
topologies, it does not address other types of body objects
that are not represented through SMPL parameters. There is
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potential to expand our existing body feature representation to
a more generalized form, thereby increasing the applicability
of the method.
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shared shape space for multimodal garment design,” ACM Trans. Graph.,
vol. 37, no. 6, 2018.

[46] G. Tiwari, B. L. Bhatnagar, T. Tung, and G. Pons-Moll, “SIZER: A
dataset and model for parsing 3D clothing and learning size sensitive
3D clothing,” in Proc. Eur. Conf. Comput. Vis., vol. 12348, 2020, pp.
1–18.

[47] Z. Zheng, T. Wang, Q. Feng, Z. Pan, X. Gao, and K. Wu, “Proxy asset
generation for cloth simulation in games,” ACM Trans. Graph., vol. 43,
no. 4, Jul. 2024.

[48] J. Yu and Z. Wang, “Super-resolution cloth animation with spatial and
temporal coherence,” ACM Trans. Graph., vol. 43, no. 4, Jul. 2024.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 8, AUGUST 2021 13

[49] Z. Lähner, D. Cremers, and T. Tung, “Deepwrinkles: Accurate and
realistic clothing modeling,” in Proc. Eur. Conf. Comput. Vis., 2018,
p. 698–715.

[50] N. Jin, Y. Zhu, Z. Geng, and R. Fedkiw, “A pixel-based framework
for data-driven clothing,” Comput. Graph. Forum, vol. 39, no. 8, pp.
135–144, 2020.

[51] J. Wu, Y. Jin, Z. Geng, H. Zhou, and R. Fedkiw, “Recovering geometric
information with learned texture perturbations,” Proc. ACM Comput.
Graph. Interact. Tech., vol. 4, no. 3, Sep. 2021.

[52] Z. Geng, D. Johnson, and R. Fedkiw, “Coercing machine learning
to output physically accurate results,” J. Comput. Phys., vol. 406, p.
109099, 2020.

[53] J. Wu, Z. Geng, H. Zhou, and R. Fedkiw, “Skinning a parameterization
of three-dimensional space for neural network cloth,” CoRR, vol.
abs/2006.04874, 2020. [Online]. Available: https://arxiv.org/abs/2006.
04874

[54] L. De Luigi, R. Li, B. Guillard, M. Salzmann, and P. Fua, “Drapenet:
Garment generation and self-supervised draping,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2023, pp. 1451–1460.

[55] R. Li, C. Dumery, B. Guillard, and P. Fua, “Garment recovery with
shape and deformation priors,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2024, pp. 1586–1595.

[56] Y. Li, H.-Y. Chen, E. Larionov, N. Sarafianos, W. Matusik, and
T. Stuyck, “Diffavatar: Simulation-ready garment optimization with
differentiable simulation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2024, pp. 4368–4378.

[57] L. Liu, Y. Zheng, D. Tang, Y. Yuan, C. Fan, and K. Zhou, “NeuroSkin-
ning: Automatic skin binding for production characters with deep graph
networks,” ACM Trans. Graph., vol. 38, no. 4, 2019.

[58] Z. Xu, Y. Zhou, E. Kalogerakis, C. Landreth, and K. Singh, “RigNet:
Neural rigging for articulated characters,” ACM Trans. Graph., vol. 39,
no. 4, 2020.

[59] T. Li, R. Shi, and T. Kanai, “DenseGATs: A graph-attention-based
network for nonlinear character deformation,” in Proc. Symp. Interactive
3D Graph. Games, 2020, pp. 5:1–5:9.

[60] ——, “MultiResGNet: Approximating nonlinear deformation via multi-
resolution graphs,” Comput. Graph. Forum, vol. 40, no. 2, pp. 537–548,
2021.

[61] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black,
“SMPL: A skinned multi-person linear model,” ACM Trans. Graph.,
vol. 34, no. 6, 2015.

[62] E. Gundogdu, V. Constantin, S. Parashar, A. Seifoddini, M. Dang,
M. Salzmann, and P. Fua, “GarNet++: Improving fast and accurate static
3D cloth draping by curvature loss,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 1, pp. 181–195, 2022.

[63] R. Chen, L. Chen, and S. Parashar, “GAPS: Geometry-aware, physics-
based, self-supervised neural garment draping,” in Int. Conf. on 3D Vis.,
2024, pp. 116–125.

[64] H. Bertiche, M. Madadi, E. Tylson, and S. Escalera, “DeePSD: Au-
tomatic deep skinning and pose space deformation for 3D garment
animation,” in Proc. IEEE Int. Conf. Comput. Vis., 2021, pp. 5451–5460.

[65] M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil,
N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron, and R. Ng,
“Fourier features let networks learn high frequency functions in
low dimensional domains,” in Proc. Adv. Neural Inf. Process. Syst.,
2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
hash/55053683268957697aa39fba6f231c68-Abstract.html

[66] W. Xie, D. Song, C. Xu, C. Xu, H. Zhang, and Y. Wang, “Learning
frequency-aware dynamic network for efficient super-resolution,” in
Proc. IEEE Int. Conf. Comput. Vis., 2021, pp. 4288–4297.

[67] F. Fang, L. Hu, J. Liu, Q. Yi, T. Zeng, and G. Zhang, “HFGN: High-
frequency residual feature guided network for fast mri reconstruction,”
Pattern Recognit., vol. 156, p. 110801, 2024.

[68] V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and
G. Wetzstein, “Implicit neural representations with periodic activation
functions,” in Proc. Adv. Neural Inf. Process. Syst., 2020.

[69] X. Chen, T. H. Li, R. Zhang, and G. Li, “Frequency-aware self-
supervised monocular depth estimation,” in Proc. IEEE Winter Conf.
Appl. Comput. Vis., 2023, pp. 5797–5806.

[70] I. Santesteban, M. Otaduy, N. Thuerey, and D. Casas, “ULNeF: Untan-
gled layered neural fields for mix-and-match virtual try-on,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 35, 2022, pp. 12 110–12 125.

[71] R. Li, B. Guillard, and P. Fua, “ISP: multi-layered garment draping with
implicit sewing patterns,” in Proc. Adv. Neural Inf. Process. Syst., 2023.

[72] Y. Shao, C. C. Loy, and B. Dai, “Towards multi-layered 3D garments
animation,” in Proc. IEEE Int. Conf. Comput. Vis., 2023, pp. 14 315–
14 324.

[73] D. Lee, H. Kang, and I.-K. Lee, “ClothCombo: Modeling inter-cloth
interaction for draping multi-layered clothes,” ACM Trans. Graph.,
vol. 42, no. 6, 2023.

[74] Carnegie-Mellon, “CMU graphics lab motion capture database,” http:
//mocap.cs.cmu.edu/, 2010, accessed: 2023.

[75] M. Atzmon and Y. Lipman, “SAL: Sign agnostic learning of shapes
from raw data,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2020, pp. 2562–2571.

[76] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1026–1034.

[77] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980
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