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Generative Approach for Detecting Small Intrusive
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Quan Hao , Rui Shi , Jiaze Li , Student Member, IEEE, and Liguo Zhang , Senior Member, IEEE

Abstract—Foreign object intrusion into high-speed railway
(HSR) catenary systems poses severe operational hazards, mak-
ing effective detection crucial for safety. Precise detection of
these small intrusive objects is essential. However, the lack
of datasets and research on foreign object intrusion in HSR
scenario brings two major challenges: limited data and low
accuracy for detecting small intrusive objects. To address these
challenges, this paper introduces a novel generative method for
detecting foreign object intrusion. To address data limitations,
we use low-rank adaptation to fine-tune a diffusion model,
developing a generation-extraction-integration framework that
generates true-to-reality HSR images of small intrusive target
objects. Furthermore, to enhance the detection of small objects
in HSR scenario, we propose a new detection model called
SA-YOLO. Based on the YOLOv9 architecture, this model
optimizes the backbone network using the star operation, an
element-wise multiplication method, and introduces the A-DyS
module to improve upsampling through dynamic sampling and
attention mechanism. Extensive experiments demonstrate that in
the HSR scenario our method outperforms existing state-of-the-
art approaches in terms of both generation quality and detection
performance, while also showing high robustness.

Index Terms—Foreign objects detection, data generation, sta-
ble diffusion, high-speed railway.

I. INTRODUCTION

IN RECENT years, expansion of high-speed railway (HSR)
networks spanning thousands of kilometers has heightened

concerns about systemic safety risks arising from foreign
object intrusion into catenary systems. Intrusive foreign
objects, small as they are, such as kites and balloons, tend
to damage catenary systems or disrupt power supply, causing
sensor malfunctions or power failure that compromise HSR
operational safety [1], [2]. To address the unique challenges
of foreign object intrusion detection within the complex HSR
environment, researchers have developed innovative detec-
tion methods integrating multi-scale sampling, feature fusion,
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lightweight extraction, and sparse cross-attention technologies
[3], [4], [5], [6], [7], [8], [9]. However, due to their heavy
reliance on data-driven deep learning algorithms calling for
extensive training datasets and the inherent difficulty in col-
lecting authentic intrusion samples to build comprehensive
datasets, the capacity of existing detection models to handle
complex HSR environment and learn from diverse modalities
of small foreign object intrusion is greatly limited [10], [11],
[12], [13], [14]. Our early experimental results demonstrated
that YOLOv9 models trained on limited data exhibited obvious
underfitting when tasked with identifying various types of
foreign objects. Data scarcity substantially hinders the devel-
opment of detection models, highlighting the urgent need for
a robust dataset expansion framework that can overcome these
limitations.

The advent of generative artificial intelligence technology
has offered promising solutions to data scarcity. Early mod-
els, such as Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs), have demonstrated potential
in image generation [15]. The recent advancement of Sta-
ble Diffusion (SD) [16] has enhanced the controllability of
the generation process, allowing for high-quality, customized
image generation [17]. Cutting-edge research suggests that
using generative methods to augment datasets can significantly
improve detection accuracy in environments when there is
a lack of positive samples [18]. However, we face great
challenges in our attempts to overcome data scarcity by gen-
erating images of intrusive foreign objects in HSR scenarios.
Currently, there is no effective generation method that can
produce image samples suitable for training object detection
models. The position, size and quantity of foreign objects often
fail to reflect real world conditions, and improvement is needed
in both the background and overall style of the the images
themselves. Thus, generating true-to-reality images of small
foreign objects in HSR environment to address data scarcity
in data-driven detection models remains a huge task for us.

In the field of object detection, the YOLO series models
facilitate real-time detection while maintaining accuracy using
regression-based methods [19]. However, in HSR scenario,
intrusive foreign objects are often small in size, incomplete
in shape, and sometimes even semi-transparent. The features
of foreign objects tend to blend with the background, such as
tracks, catenary systems, and natural environment, making it
difficult to distinguish the objects from the background for
effective and accurate detection. Through our early experi-
ments, we found the performance of existing models to be
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Fig. 1. Examples of foreign object intrusion images in HSR scenarios, where
“Gen” represents images from the generated dataset and “Real” represents
images from the collected real-world dataset.

suboptimal and undesirable. Therefore, we started to work out
a new approach to accurately detect small foreign objects,
such as balloons, plastic bags, kites, etc. in complex HSR
environment.

Built upon results of existing research, our innovative study
addresses two limitations mentioned in the above: creating
true-to-reality images of small intrusive foreign objects in HSR
scenarios to overcome data scarcity, and accurately detecting
small foreign objects including semi-transparent ones that
easily blend into the background in complex HSR environ-
ment. To tackle these challenges, we develop a generative
approach. As illustrated in Fig. 2, we first develop a generative
framework to augment the dataset of intrusive foreign objects
and subsequently enhance the YOLOv9 [20] detection model
to improve the detection accuracy of small foreign objects.
The implementation is divided into two steps:

Image Generation. As depicted in Fig. 2, we propose an
innovative generative framework based on diffusion models.
To ensure the precision and controllability of the generated
images, we utilize the Stable Diffusion model 1.5 (SD 1.5)
[16], which enables better control over noise addition and
removal processes. To better align the style characteristics of
HSR scenario with the images of intruding foreign objects,
we apply Low-Rank Adaptation (LoRA) [21] to fine-tune the
SD model using real datasets of HSR scenario and foreign
object intrusion. Furthermore, inspired by CLIPSeg [22] and
aiming to generate true-to-reality and complex images of
small objects, we propose a three-stage generation-extraction-
integration method. Ultimately, we seamlessly integrate the
extracted foreign objects into HSR scenario, producing true-to-
reality composite images. Experimental results show that our
method outperforms the existing methods in terms of image
quality, data sufficiency, and capability of training detection
model.

Object Detection. To improve feature extraction and align-
ment and detection accuracy, we propose the SA-YOLO
model. Images depicting small foreign intruding objects in
HSR scenario are often complex, containing elements such as
the catenary system, tracks, modern railway equipment, natural
background, and foreign objects. To capture the deep layer fea-
tures of these images, we apply the StarNet backbone network
[23], which uses element-wise multiplication to map inputs
into a high-dimensional, nonlinear feature space, constructing

an implicit feature space of extremely high dimensionality. In
addition, we introduce an Attention-based Dynamic Sampling
(A-DyS) module during the upsampling stage. This module
enhances the capability for hard example mining and improves
concentration on small foreign objects, which are often diffi-
cult to detect due to blurred boundaries. To focus more on the
local features of small foreign objects, the SA-YOLO model
optimizes the architecture of YOLOv9 [20] for these specific
scenario. Ablation studies demonstrate that enhancements to
the backbone network and the upsampling module effectively
improve the accuracy of small object detection, significantly
augmenting the detection capabilities crucial to ensuring safety
in HSR operation.

In summary, our contributions are as follows:
• We propose a generation-extraction-integration image

generation framework. By generating true-to-reality
images, this framework effectively addresses the data
scarcity for training object detection models.

• We introduce the SA-YOLO detection model, featured
by the star operation in the backbone and A-DyS mod-
ule. With these innovations, the detection of small,
hard-to-identify objects in complex HSR environment is
significantly improved.

Experimental results validate both the effectiveness and
robustness of our generative approach, ultimately improving
mAP50 by 6.9%.

II. RELATED WORK

A. Image Generation

In the field of image generation, early generative AI
methods exhibit several limitations. Variational Autoencoders
(VAEs) [24], [25], [26], [27] can identify latent representations
of data but typically generate low-quality images [28]. Gener-
ative Adversarial Networks (GANs) [29], [30], [31], [32], [33]
often face challenges such as overfitting and complex training
processes [34], [35].

With the advent of diffusion models, these limitations are
overcome. Ho et al. introduced the Denoising Diffusion Prob-
abilistic Model (DDPM) [36]. This model improves image
quality by gradually adding noise to data and then learning
a denoising process to generate new samples. Furthermore,
CLIP [37], as one of the multimodal learning techniques,
shows impressive versatility in handling complex visual and
linguistic tasks through learning associations between images
and textual descriptions. Built on these advancements, the
Stable Diffusion (SD) model [16] was created, fusing U-net
model [38] and cross-attention mechanism [39]. It performs
the diffusion process in latent space, significantly reducing
computational demands while maintaining high-quality image
generation. Recent advancements [40], [41], [42], [43], [44],
[45], [46], [47] have further demonstrated the strong capabil-
ities of these models in producing photorealistic images.

However, effectively generating complex multi-object
images in this scenario remains a huge challenges. Lüddecke
and Ecker introduced CLIPSeg [22], a novel image segmen-
tation model utilizing a transformer-based decoder for precise
semantic segmentation and localized image extraction. This
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Fig. 2. Overall methodology architecture of the generative enhancement method for detection of intrusive foreign object in HSR scenario: The upper section
represents image generation while the lower section represents object detection.

development enables the extraction of small foreign objects
and creates new opportunities for generating complex HSR
intrusion images.

Despite this advancement, we still see problems in gener-
ating high-quality images in HSR scenario. LoRA fine-tuning
[21] significantly improves the quality of generated images by
applying low-rank decomposition to reduce training parame-
ters while maintaining model efficiency. In a recent study, Choi
et al. [48] demonstrated that the LoRA technique for fine-
tuning diffusion models worked well to achieve better style
alignment and improve generation quality. This technique is
expected to show strong capability in generating images in
HSR scenario.

B. Object Detection

In recent years, HSR foreign object detection has received
widespread attention. Special foreign objects may pose serious
safety hazards to the operation of HSR, potentially causing
major failure in the overhead catenary system or direct colli-
sions with train components [3], [4], [6]. However, detecting
these foreign objects still faces enormous challenges. Due to
their unique characteristics and variable appearances, complex
lighting changes in railway environment, adverse weather
conditions, and image blur as a result of high-speed move-
ment. To address these challenges, researchers have developed
various innovative methods. These include intelligent systems
using stable sampling modules and feature fusion techniques
[3], lightweight feature extraction architectures with adap-
tive fusion networks [4], sparse cross-attention transformers
designed for overhead power systems [5]. Other approaches
involve unsupervised methods based on track image symmetry
[8] and improved Faster RCNN architectures [6]. The deep
SVDD semi-supervised algorithm has achieved significant

results in detecting foreign objects on ballastless track beds
[7]. Additionally, deep generative methods through adversarial
training can detect unknown objects of undefined categories,
opening new directions in this field [49].

YOLO series models [50], [51], [52], [53] have been widely
applied in object detection and have shown excellent per-
formance, demonstrating outstanding application potential in
HSR foreign object detection. The YOLOv5s model combined
with railway boundary modeling has demonstrated excellent
adaptability and detection efficiency [54]. CF-YOLO [55] has
optimized detection capabilities in snowy conditions through
cross-fusion blocks, while LR Tiny YOLOv3 [56] has reduced
network complexity to meet the requirements of embedded
systems. The state-of-the-art (SOTA) model YOLOv9 [20] has
further optimized these aspects by introducing programmable
gradient information. This innovation addresses the problem
of information loss during data transmission in deep networks,
thereby improving object detection accuracy and showing
significant potential for HSR foreign object detection.

Despite this substantial progress, the detection of small
foreign objects such as kites and balloons in HSR environment
remains a great challenge. These small foreign objects are
difficult to detect primarily because they have limited visible
features and tend to blend into the background. The lack
of distinctiveness often confuses detection models. Recent
advancements have driven notable development in this field,
particularly in complex topological relationship processing
[57], [58] and hidden layer expansion for abstract scene infor-
mation representation [58], [59], [60]. Liu et al. [61] developed
the DySample approach, which demonstrated enhanced fea-
ture extraction capabilities through advanced point sampling
methodologies. Moreover, the StarNet framework proposed
by Ma et al. [23] implemented element-level multiplication
techniques to achieve improved multi-scale feature fusion
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outcomes. In addition, Qi et al. enhanced the detection per-
formance of the YOLO architecture in railway scenes by
integrating FasterNet and attention mechanisms [62]. Col-
lectively, these technological innovations provide important
References for optimizing existing model architectures and
improving the detection performance of small objects in
challenging environment.

In summary, although prevailing models have significantly
improved image quality and foreign object detection, they still
face limitations. These include difficulties in merging complex
multi-object images, which can lead to poor realism and style
alignment, and inadequate performance in accurately detecting
small foreign objects in the HSR environment. Our proposed
method successfully overcomes these limitations. It aims to
refine image styles and extract foreign objects through image
segmentation, as well as improve feature alignment and extrac-
tion techniques for detection. Ultimately, this work introduces
a Generative Approach for Detecting Small Intrusive Foreign
Objects in High-Speed Railway Scenario.

III. GENERATIVE METHOD FOR CREATING DATASET OF
HSR FOREIGN OBJECTS

A. Generation

First, we construct a Stable Diffusion (SD) model, a gen-
erative model based on the latent diffusion process capable
of generating high-quality images through noise adding and
reducing. This model includes two processes: the forward
diffusion process and the reverse generation process. The
equations for the forward diffusion process, reverse generation
process, and loss function are as follows:

q(xt |xt−1) = N (xt;
√
αtxt−1, (1 − αt)E) (1)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ2
θ(xt, t)E) (2)

LDiffusion = Et,x0,ε

�
‖ε − εθ(xt, t)‖22

�
(3)

where xt ∈ R
D (D is the dimension of the data space)

represents the data vector at time step t, αt controls the
degree of noise addition, and t is the scalar time step. E is
the identity matrix. The reverse generation process recovers
data from noise, with µθ and σ2

θ being the mean vector and
scalar variance parameterized by the neural network θ. The
loss function is calculated as the mean squared error (MSE)
between the predicted noise vector εθ(xt, t) and the actual
noise vector ε, where ε is sampled from a standard Gaussian
distribution N (0,E), and x0 is the original true image vector.

Next, we introduce low-rank adaptation (LoRA), performing
fine-tuning on a dataset constructed from HSR style pictures
and images of intrusive foreign object. LoRA decomposes
the pretrained weight matrix into two low-rank matrices and
introduces a scaling factor α to control the magnitude of
updates. The weight updating mechanism is as follows:

W′ = W +
α

r
(AB) (4)

where W,W′ ∈ Rm×n are the pretrained and updated weight
matrices, A ∈ Rm×r and B ∈ Rr×n are the low-rank matrices, r
is the rank (scalar), and α is a scalar controlling the magnitude
of adjustment. Adjustments are made by the product of A

and B, controlled by α, ensuring effective adaptation without
significantly changing the model structure. Additionally, loss
function of LoRA is:

LLoRA = λ1Ltask(y, ŷ) + λ2Lreg(A,B) (5)

where Ltask measures the difference between the generated
image vector ŷ ∈ RD and the target image vector y ∈ RD, and
Lreg is a regularization term to prevent overfitting. λ1, λ2 ∈ R
balance their contributions. During the fine-tuning process, we
freeze the pretrained weights W and train only the low-rank
matrices A and B. This reduces the discrepancy between the
generated images and the target domain, ensuring the model
retains its pretrained capabilities while learning new features
and enhancing performance.

Following this method, we fine-tuned the SD model on
images of HSR backgrounds and relevant intrusive foreign
objects. The fine-tuning enables the generative model to
produce images with complex HSR background features and
enhances its capability to generate true-to-reality images of
intrusive foreign objects.

B. Extraction

To further embed the foreign object into complex HSR
background images, we aim to first extract a clean version
of the foreign object. As shown in Fig. 3 (b), we encode
the prompt and the original image separately. This process
introduces a CLIP Transformer block, where the text encoder
and image encoder map the prompt description and the original
image to the same embedding space. Then, we use contrastive
learning to obtain a prior latent representation and calculate
the cosine similarity between the image and text embeddings,
as shown in the following equation:

sim(vi, ti) =
v>i ti

‖vi‖2‖ti‖2
(6)

where vi ∈ R
k represents image embedding vector, and ti ∈ R

k

represents text embedding vector. In this process, the loss
function of the model depends not only on the latent space
of the original image but also on the conditioned latent
embedding.

The loss function LCLIP is calculated based on the similarity
of image-text pairs and Softmax normalization as follows:

LCLIP = −
1
N

NX
i=1

"
log

exp(sim(vi, ti)/τ)PN
j=1 exp(sim(vi, t j)/τ)

+

log
exp(sim(ti, vi)/τ)PN
j=1 exp(sim(ti, v j)/τ)

#
(7)

where N is the batch size, and τ ∈ R is the temperature
parameter. By minimizing the contrastive loss function LCLIP,
we increase the similarity of matching pairs and reduce the
similarity of non-matching pairs, effectively aligning image
and text features.

During the encoding process, we use the intermediate acti-
vation layers of the CLIP model to extract different levels of
feature vectors (projections). These extracted feature vectors
are then input into a decoder, which uses Feature-wise Linear

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on November 11,2025 at 05:12:15 UTC from IEEE Xplore.  Restrictions apply. 



HAO et al.: GENERATIVE APPROACH FOR DETECTING SMALL INTRUSIVE FOREIGN OBJECTS IN HSR SCENARIO 5

Fig. 3. Detailed diagram of the HSR foreign object intrusion image generation method: (a) LoRA fine-tuning and image generation process, (b) foreign object
extraction process, and (c) automatic integration of foreign object intrusion images.

Modulation (FiLM) to modulate the features. Specifically,
the scaling parameters γ(t) and shifting parameters β(t) are
generated from the conditional vector t ∈ Rk, and the feature
modulation process is as follows:

FiLM(M, t) = γ(t) �M + β(t) (8)
γ(t) = Wγt + bγ, β(t) = Wβt + bβ (9)

where M represents the intermediate layer activations (poten-
tially a tensor or feature map), t ∈ Rk is the conditional
vector (text embedding), and γ(t),β(t) are the scaling and
shifting parameter vectors generated from t, compatible with
dimensions of M. Wγ,Wβ are weight matrices, and bγ,bβ
are bias vectors. � denotes element-wise multiplication. The
output is then mapped through a sigmoid activation function
to obtain the foreign object mask:

Mmask = σ
�

Decoder
�
{CLIP(Irail)lk }

L
k=1, t

��
(10)

where Mmask represents the foreign object mask tensor (with
spatial dimensions matching Irail and values in [0, 1]), indi-
cating the area in the image tensor Irail corresponding to the
text prompt Tobject. The mask is generated using the following
components: t is the text embedding vector derived from
Tobject. {CLIP(Irail)lk }

L
k=1 is the set of feature vectors for Irail

extracted from different layers lk of the CLIP model. Decoder
is the decoder network that uses FiLM internally, conditioned
on t, to process the CLIP features. σ is the sigmoid activation
function applied to the output of the decoder. We then use the
mask Mmask to process the foreign object image tensor Iobject,
obtaining a clean foreign object image with a transparent
background. Through these steps, the automatic segmentation
and extraction of images of foreign objects is accomplished.

C. Reconstruction

Foreign object intrusions often occur on railway catenaries
or tracks. When merging foreign objects with the background,

it is important to consider the real condition of the position
and size of objects. To achieve automated fusion and recon-
struction, we design a position-size encoding fusion method
that seamlessly integrates the foreign objects into the HSR
background, ultimately generating true-to-reality images of
foreign objects entangled with HSR catenary system.

Firstly, inspired by cutting-edge research and widespread
applications of large language models [63], we use Qwen
1.5 [64] to process prompts, generating reasonable position
coordinate vectors and size vectors. Then, based on the size
vector, we adjust the size of the clean foreign object image
tensor Iobject to get I′object. Based on the position vector, we
generate a coordinate map matrix Mmap, where its elements
Mmap(i, j) ∈ {0, 1} indicate whether the coordinates (i, j) are
within the covered area of the foreign objects. Finally, we
overlay the processed foreign object image I′object onto the
background image tensor Ibackground, resulting in the final image
tensor Ifinal. The calculation process is as follows:

Ifinal = Ibackground � (1 − φ(Mmap)) + (I′object � φ(Mmap)) (11)

where � represents pixel-wise multiplication, 1 is a tensor
of ones with the same dimensions as Ibackground, and φ is an
activation function mapping the values in Mmap to 0 or 1.
Thus, where Mmap equals 1, I′object is overlaid on Ibackground,
and where Mmap equals 0, Ibackground is retained, ensuring the
foreign object image is correctly overlaid onto the background
image, thereby generating the final composite image.

As shown in Fig. 3 (c), we effectively integrate clean foreign
object images with the HSR scene images. Although the for-
eign objects are seamlessly incorporated into the background,
the real status of environmental interactions requires further
refinement. Consequently, we further enrich the prompts,
introduce noise to the composite images, and reprocess them
using the SD model for reconstruction, ultimately generating
true-to-reality images of HSR foreign intrusive objects.
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To address real-world challenges, we also consider adverse
weather conditions. We developed extreme weather masks for
heavy rain and dense fog using computer vision techniques.
By modifying lighting effects, shadow properties, and color
parameters, we integrated these masks into the original images
before generation and reconstruction. This process yielded
images under adverse weather conditions.

IV. SA-YOLO FOR HSR INTRUSIVE FOREIGN OBJECT
DETECTION

A. StarNet Backbone

In the HSR foreign object intrusion scenario, some objects
(such as plastic bags) are semi-transparent and small in size.
The complex background of HSR comprises various elements
such as catenaries, tracks, railway barriers, and natural land-
scapes, making small foreign objects easily blend with the
background and hence difficult to detect. This poses great
challenges for existing object detection models, particularly in
feature extraction and alignment. Drawing theoretical inspira-
tion from StarNet, we developed an innovative star operation
of elementwise multiplication to construct a sophisticated,
high-dimensional nonlinear feature representation. Based on
this principle, we strategically refined the YOLOv9 backbone
architecture, significantly enhancing its capability in extracting
complex image features and mining hard samples.

By stacking multiple layers with width d, StarNet can
implicitly generate a feature space belonging to Rp, where the
dimension p follows the exponential relationship p = (d/

√
2)2l

after l star operation blocks. For example, given a 10-layer
(l = 10) isotropic network with a width d = 128, the
resulting implicit feature dimension p approximates 901024.
This dimension is extremely large and can be reasonably
approximated as infinite. Consequently, the layered stacking
process enables substantial exponential amplification of the
implicit feature dimension through the star operation.

Fig. 2 illustrates the architecture of the StarNet backbone. It
comprises four main stages, each composed of Star Blocks and
standard convolutional layers. Given input features with spatial
dimensions H × W, the backbone processes these features
sequentially through the four stages. Across these stages, the
spatial resolution is systematically reduced to H/32×W/32,
while the number of feature channels increases progressively,
scaling with a base dimension parameter d up to a maxi-
mum of 8d. This design progressively builds richer, more
abstract feature representations by increasing channel depth
while reducing spatial redundancy. Leveraging the Star Block
modules and their use of elementwise multiplication, StarNet
effectively maps inputs to a high-dimensional nonlinear feature
space. This enhances the capacity of the model to comprehend
complex scene patterns and multi-scale feature interactions,
demonstrating exceptional performance in detecting small for-
eign object intrusions in HSR scenarios.

B. A-DyS Upsampling Module

For precise feature map reconstruction during upsampling,
we propose A-DyS, a high-precision upsampling module

Fig. 4. SA-YOLO detailed design. (a) StarNet block, where >; (star operation)
means element-wise multiplication; (b) Attention-based Dynamic Sample
(A-DyS) block.

designed to address scenarios where small objects are cam-
ouflaged within complex backgrounds, and therefore hard to
identify. As illustrated in Fig. 4(b), its core principle involves
generating dynamic offsets using an attention mechanism and
then dynamically resampling the feature map.

The A-DyS module computes dynamic offsets for the
feature map, performing fine-grained spatial sampling on
the input features. This adaptive sampling process captures
detailed information, enabling the extracted feature vectors to
reflect deeper image characteristics, thus enhancing the ability
of the model to identify small foreign objects.

Once the dynamic offsets are calculated, we incorporate the
attention mechanism. This mechanism first computes attention
information based on the input feature map, then uses this
information to adjust the dynamic sampling grid, allowing
the model to focus on critical feature regions. This approach
significantly improves the extraction of features of small
objects.

The A-DyS module, detailed in Algorithm 1, refines the
upsampling process through attention-guided dynamic sam-
pling. Initially, a dynamic offset tensor, Woffset, is computed
from the input features X via a 2D convolution (Conv2d). This
offset adjusts an initial grid G to yield a preliminary sampling
grid S. Concurrently, Query (Q), Key (K), and Value (V) ten-
sors are generated from X through convolutional layers. These
tensors facilitate the computation of a spatial attention map
A via scaled dot-product attention, followed by an activation
function σ. Crucially, this attention map A spatially modulates
the preliminary grid S to produce the final attention-weighted
sampling grid S′. This step effectively directs the sampling
process towards more salient feature regions identified by the
attention mechanism. Prior to sampling, this weighted grid S′
is normalized (Normalizing) based on the input feature map’s
spatial dimensions (H,W) to create Snorm. Subsequently, a
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Algorithm 1 A-DyS Algorithm (Revised Grid Variables)
Input: Feature map X, Initial position grid G, Upsampling

scale s
Output: Upsampled feature map X′

Initialization:
Woffset ← Conv2d(X)
S← G + 0.25×Woffset
Attention-based dynamic sampling:
Q,K,V← Conv2d(X)Q,K,V

A← σ
�

QK>
√

d

�
V

S′ ← S× A
B,C,H,W ← dimensions of X
Snorm ← Normalizing(H,W,S′,X)
F← GridSampling(Snorm,X)
X′ ← Reshape(F, (B,−1, sH, sW))
return X′

GridSampling operation utilizes Snorm to interpolate features
from the original map X, yielding an intermediate feature
representation F. Finally, F is reshaped (Reshape) to match
the target upsampled spatial resolution (sH × sW), producing
the output feature map X′. By dynamically adjusting sampling
locations based on feature attention, A-DyS module enhances
the extraction of fine-grained details, proving particularly
beneficial for detecting small foreign objects.

V. EXPERIMENT

A. Experimental Setup

1) Dataset and Preprocessing: We developed a compre-
hensive dataset of 543 high-quality images depicting foreign
object intrusions in the high-speed railway (HSR) scenario
through rigorous collection and filtering processes. The dataset
comprises 84 images of kites, 79 of balloons, 122 of semi-
transparent objects (such as plastic bags), 124 of opaque
objects (including banners and fabrics), and 134 of natural
foreign objects (like branches and nests). From this collection,
we selected 100 representative images to form a validation set
for evaluating detection accuracy of our model in real-world
scenarios. For all experiments, we consistently used this real-
world validation dataset to evaluate performance.

To evaluate performance of our method, we constructed
datasets for generation and validation experiments. Given the
limited size of datasets, we focused on evaluating methods
through the validation set.

Additionally, we used computer vision techniques to create
an adverse weather dataset by adding rainfall and fog effects
to images, further evaluating the generalization performance
of our method.

a) Real Dataset: We collected 543 images of real-life
small target foreign object intrusions, including 443 images
for training and 100 for validation.

b) Gen Dataset: We combined the Real dataset with an
increasing number of generated images, ranging from 100 to
900.

c) Adverse Weather Dataset: We transformed our
datasets with rainfall and heavy fog effects, comprising 443

Fig. 5. Comparison of generated effects with SOTA models. The upper part
shows the original outputs generated by baseline SOTA models: SD 1.5,
SDXL, FLUX, and ChatGPT 4o. The lower part contrasts the results from
our method with the outputs of these SOTA models (SD 1.5, SDXL, FLUX)
after LoRA fine-tuning.

real images and 400 generated images (totaling 843) for train-
ing, while maintaining 100 consistent images for validation.

2) Evaluation Metrics: Mean Average Precision (mAP)
aggregates AP scores across categories and thresholds to mea-
sure object detection performance comprehensively. Specifi-
cally, mAP50 represents mean AP at an IoU threshold of 0.50,
while mAP50-95 averages over thresholds from 0.50 to 0.95
in 0.05 increments, assessing detection at varying strictness
levels.

3) Experimental Environment and Hyperparameters: Our
experiments were conducted with eight NVIDIA RTX 2080Ti
GPUs. We performed LoRA fine-tuning with a rank of 32.
During training, the batch size was set to 32, and the initial
learning rate was established at 0.001. The variability observed
in our experiment is approximately ±0.3%.

B. Evaluation of Image Generation Effects

We evaluated our proposed method by comparing it with
several State-of-the-Art (SOTA) models: SD 1.5 [71], SDXL
[72], FLUX [73], and ChatGPT-4o [74], using identical
prompts. As shown in Fig. 5, we presented both original
SOTA outputs and results after fine-tuning SD 1.5, SDXL, and
FLUX on our custom HSR foreign object intrusion dataset.
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Fig. 6. Detailed realism evaluation results for 16 generated images are presented. From left to right, the evaluation results show the high-speed railway (HSR)
background effect, intrusion scene effect, and foreign object characteristics (size and catenary entanglement). These results are visualized using heatmap blocks
corresponding to Fig. 5, in which darker colors signify better performance.

Fig. 7. Comprehensive evaluation results of the realism performance for 16
generated images, with the heatmap blocks corresponding to Fig. 5. In this
heatmap, darker colors represent better performance.

TABLE I
AVERAGE SCORES OF FOUR FINE-TUNED IMAGE GENERATION METHODS

ChatGPT-4o was used only for baseline comparison as it
is a closed-source model and lacked a fine-tuning interface.
The results qualitatively show improved realism in fine-tuned
models, especially for HSR background, with performance
generally scaling with model size among the SOTAs.

To quantitatively assess realism, we conducted human eval-
uations via questionnaires, scoring images from 1 (poor)
to 5 (excellent) on four key aspects: (1) HSR background
quality, (3) overall intrusion scene realism, (2) small target
object characteristic adherence, and (4) catenary entanglement
effects. As shown in Fig. 6, these scores are presented using
heatmaps, where darker colors signify better performance.

The evaluation results, illustrated in Fig. 6 and Fig. 7,
demonstrate that our method significantly outperforms the
fine-tuned SD 1.5 and SDXL models across all four evaluated
aspects. A notable comparison involves the fine-tuned FLUX
model. Despite operating at a scale more than four times larger
than our base model, the FLUX model only approached our
method’s performance in HSR background generation. Fur-
thermore, our method maintained superior results in the other
crucial aspects. Overall, our approach achieved a composite
score of 3.375, as detailed in Table I. This score is markedly
higher than those of the compared SOTA models, representing
a substantial improvement of 0.73 (27.8%) over the base SD
1.5 and 0.322 points (10.5%) over the significantly larger fine-
tuned FLUX.

The importance of fine-tuning on our specialized dataset
using LoRA is evident from Fig. 5. This process significantly
improves the generation capabilities of existing generative
models. Among these fine-tuned comparative models, FLUX
performed best, while the performance of SD 1.5 was notably
hampered by its limited model scale. In contrast stood our
multi-step generation method, built upon the foundational SD
1.5 architecture. It exhibited markedly superior generation
quality. This level of performance substantially surpassed
that of all other models compared, including their fine-tuned
versions. This overall result strongly validates the effectiveness
and necessity of our proposed multi-step generation strategy.

C. Evaluation of Object Detection Performance

To validate the effectiveness of our generated image data and
model architecture, we conducted a comprehensive compari-
son of the SA-YOLO method against existing SOTA models,
including CNN-based YOLO series models, the Transformer-
based RT-DETR architecture, and YOLOv9 enhancement
models.

Experimental results demonstrated that when trained solely
on the Real dataset, our SA-YOLO model achieved an
mAP50 of 74.0 and an mAP50-95 of 40.7. Although YOLOv12
showed marginally higher mAP50 (74.3), our model tied with
MobileNetV4 for the best mAP50-95 performance, indicating
SA-YOLO’s excellent detection precision on the Real dataset.
The CNN-based YOLO family models generally performed
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TABLE II
COMPARISON OF DIFFERENT SOTA DETECTION MODELS TRAINED WITH THE REAL DATASET AND THE GEN DATASET

well, while RT-DETR achieved a relatively lower perfor-
mance with mAP50 of 67.4, suggesting that for this particular
task, CNN-based architectures might be more suitable than
Transformer-based ones.

When integrating generated data (Real + Gen400), all
models showed improvements, confirming the value of our
generated data approach. SA-YOLO’s advantages significantly
expanded after using generated images, achieving the highest
performance among all models, with mAP50 and mAP50-95
reaching 76.7 and 45.5 respectively. Compared to train-
ing with real data alone, these metrics improved by 2.7%
and 4.8% respectively, outperforming all comparison mod-
els in absolute terms. Notably, RT-DETR, despite its lower
baseline performance, demonstrated substantial improvement
(+5.8% in mAP50), indicating that our generated data could
enhance diverse model architectures. The YOLOv9 enhance-
ment models showed varying responses to generated data, with
MobileNetV4 demonstrating more substantial improvement
than StarNet. However, YOLOv12 showed the most limited
improvement with generated data (mAP50 increased by only
1.1%), potentially due to its residual efficient layer aggregation
networks (R-ELAN) structure which prioritized generalized
stability over specialized data adaptation. These results con-
clusively demonstrated that SA-YOLO possessed exceptional
adaptability and learning capability when integrating generated
data, efficiently extracting features from diverse data sources
to enhance detection precision. This experiment validated not
only the quality of our generated data but also the architectural
innovations of SA-YOLO, particularly effective for the HSR
foreign object intrusion detection.

D. Ablation Studies

To evaluate the effectiveness of our proposed components
and the impact of using the Gen dataset to enhance training,
we conducted comprehensive ablation studies.

The results were summarized in Table III. The standard
YOLOv9 model served as our baseline, achieving a mAP50
of 69.8 and a mAP50-95 of 37.4, utilizing 51.18M parameters
and requiring 239.9 GFLOPs. Replacing the baseline back-
bone with StarNet improved mAP50 to 73.2 and mAP50-95 to
40.3, while reducing parameters to 41.86M and GFLOPs to
193.7. This confirmed the ability of StarNet to enhance both

accuracy and efficiency. Integrating only the A-DyS module
increased mAP50 to 73.5 and mAP50-95 to 40.6, with slightly
increased computational requirements (51.27M parameters,
240.0 GFLOPs). Combining StarNet and A-DyS to create
SA-YOLO improved accuracy (mAP50 to 74.0, mAP50-95 to
40.7) while maintaining efficiency (41.94M parameters, 193.8
GFLOPs), indicating effective synergy between components.

Using the Gen dataset to enhance training of the baseline
model yielded significant improvements: mAP50 increased to
75.9 (6.1% increase) and mAP50-95 to 43.1, with no additional
inference overhead. When training enhancement with the Gen
dataset was applied to the StarNet-enhanced model, mAP50
improved to 73.6 and mAP50-95 to 42.6. Similarly, for the A-
DyS-enhanced model, training with the Gen dataset boosted
mAP50 to 76.3 and mAP50-95 to 44.7.

Our complete method, SA-YOLO with training enhanced
by the Gen dataset, achieved optimal performance with
76.7 mAP50 and 45.5 mAP50-95. This represents significant
improvements over the baseline (mAP50 by 6.9%, mAP50-95 by
8.1%) while requiring fewer parameters (41.94M vs. 51.18M)
and GFLOPs (193.8 vs. 239.9). These studies demonstrate
both the individual and synergistic effectiveness of our archi-
tectural components and highlight the critical role of Gen
dataset-enhanced training in significantly improving detection
performance.

E. Image Generation Prompt Ablation Studies

To evaluate the impact of prompting strategies on image
generation quality and subsequent detection performance,
we designed an ablation experiment featuring three distinct
prompt configurations: Full Prompt, Positional Prompt, and
Minimal Prompt. The Full Prompt configuration included
detailed descriptions, positioning information, and negative
prompts. The Positional Prompt configuration used only sim-
ple object descriptions and position information. Lastly, the
Minimal Prompt configuration contained only the names of
the foreign object and the background. For this experiment,
we generated images across all three groups while maintaining
consistency in background, object type, and position. Due to
the inherent randomness in image generation, we implemented
a rigorous quality control process to ensure data integrity and
experimental fairness. We generated 1000 images for each
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TABLE III
ABLATION STUDY RESULTS

Fig. 8. Comparison of generated effects with different prompts.

Fig. 9. Effect of enhanced training with varying numbers of generated data on
detection performance. The solid line shows average performance, the colored
area indicates detection thresholds for five foreign objects, and the dashed line
represents YOLOv9 baseline.

Fig. 10. Comparison of detection results using power grid foreign object data.
Two solid lines represent performance across two datasets, with the colored
area indicating detection thresholds for five foreign object types.

prompt group, which were randomly shuffled and evaluated
by three independent assessors using the four criteria from
Section B. We selected the top 300 highest-scoring images
from each group for object detection experiments.

Our analysis revealed distinct visual limitations in images
generated using secondary prompts compared to the Full
Prompt strategy. As shown in Fig. 11, train heads exhibited
balloon-like appearances under suboptimal prompting condi-
tions. We attribute this phenomenon to several factors. First,
insufficient text-image feature alignment within SD 1.5 causes
the model to struggle with sparse prompt features, resulting

Fig. 11. Adverse weather transformation process. The top row displays origi-
nal images, while the bottom row shows their counterparts transformed under
rain and fog conditions. Images on the left are synthetically generated, whereas
images on the right are captured from real environment. The validation dataset
was constructed exclusively using the authentic images shown in the rightmost
column.

TABLE IV

SA-YOLO PERFORMANCE ACROSS DIFFERENT PROMPT CONDITIONS

in cross-associated features during fusion. Second, balloons
and streamlined train heads possess inherent similarities as
both follow fluid dynamics principles, creating natural visual
parallels that confuse the generation process. Additionally,
cross-multiplicative modeling of positional and object fea-
tures may interfere with prompt interpretation when features
lack clarity. Despite these challenges, our comprehensive Full
Prompt strategy effectively mitigates these issues through in-
depth analysis of HSR scenarios and train characteristics.
Additional generated examples can be found in Fig. A.1 in
the appendix (See the Supplementary Material).

As shown in Fig. 8 and Table IV, prompting strategies sig-
nificantly influenced both image generation quality and object
detection performance. Comprehensive prompt engineering
in our method produced photorealistic intrusion scenarios,
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resulting in superior detection metrics with mAP50 of 76.7
(2.7% improvement over real images) and mAP50-95 of 45.5
(4.8% improvement). In contrast, the Minimal Prompt group
yielded lower mAP50 at 72.3 (1.7% decrease) despite a
slight increase in mAP50-95 to 41.4 (0.7% improvement). The
Positional Prompt group showed further performance degra-
dation with mAP50 dropping to 70.9 (3.1% decrease), though
mAP50-95 improved to 42.4 (1.7% increase).

Notably, our method achieved a remarkably low failure
rate of just 0.50%. Here, failure referred to instances where
the model failed to generate proper foreign object intrusion
images. In comparison, the Minimal Prompt group had a
failure rate of 12.25%, and the Positional Prompt group
showed an even higher failure rate of 17.75%. Since our
method was based on foreign object mask map fusion and
image reconstruction, position prompts had minimal impact
on the final object placement. This validated the robustness
of our generation approach for small target foreign object
intrusion scenarios. These results demonstrated that well-
engineered prompts not only enhanced the visual quality
of generated images but also substantially improved object
detection performance.

F. 100-Step Generated Image Data Experiment

This experiment evaluated the impact of varying quantities
of generated images on the detection of small target foreign
objects in the HSR scenario. By incrementally adding 100
generated images at a time to the training dataset, up to a
total of 900 images, we assessed the performance of the model
using the mAP50 and mAP50-95 metrics.

The results showed that incorporating up to 400 generated
images significantly improved detection performance, with
mAP50 and mAP50-95 reaching 76.7 and 45.5 respectively.
However, beyond 400 images, performance began to decline,
likely due to increased noise and overfitting. Interestingly,
at 300 and 500 images, the training results deviated from
the overall trend, possibly due to high similarity among
the sampled images. This issue could be addressed through
improved sampling methods in future work.

Notably, with 400 generated images, the ratio of gener-
ated to real data reached 1:1, which indicated an ideal data
augmentation strategy. These findings suggest that effectively
managing both the quantity and quality of generated data is
crucial for optimizing model performance.

G. Comparative Analysis of Gen Dataset Versus Power Grid
Dataset in Training the SA-YOLO Model

This study compared the impact of generated datasets
(Gen) and power grid foreign object datasets (Power Grid)
on training the SA-YOLO model. Notably, the power grid
dataset performed well when 400 images were used, achieving
mAP50 and mAP50-95 scores of 69.2 and 38.6 respectively. By
evaluating datasets with 300, 400, 500, and 600 additional
images (either generated or from power grid sources) added
to the real dataset, the results showed that generated images
significantly improved model performance compared with the
power grid data. Specifically, in the case of 400 images, the

TABLE V

COMPARISON OF SA-YOLO AND BASELINE MODELS TRAINED WITH THE
ADVERSE WEATHER DATASET

performance difference reached its peak, with mAP50 and
mAP50-95 gaps of 7.5% and 6.9% respectively. These results
indicated that, compared with foreign object intrusion data
from specific scenarios, the generated data contained more
effective features. This further proves the effectiveness of our
proposed generative method in addressing sample scarcity
and underscores the superior capability of generated data in
enhancing detection performance.

H. HSR Foreign Object Intrusion Detection and Generation
Experiments Under Adverse Weather Conditions

To evaluate the effectiveness of our proposed generation
method under challenging conditions, we investigated its abil-
ity to improve HSR foreign object detection performance using
the YOLOv9 and SA-YOLO models in simulated heavy rain
and dense fog scenarios. In this experiment, we introduced
factors such as heavy rain, dense fog, and overcast skies,
and transformed real-world datasets using computer vision
techniques. As shown in the first row of Fig. 11, the original
training and validation datasets contain both generated HSR
foreign object intrusion images and authentic foreign object
intrusion images. We proportionally allocated real foreign
object intrusion images collected from operational HSR lines
using specialized monitoring equipment throughout the train-
ing and validation sets.

The transformed image effects are shown in the second row
of Fig. 11. The transformed images exhibit heavy rainfall with
extremely poor visibility, achieving realistic adverse weather
effects in both training and validation sets. Despite being
severely constrained by sample limitations, these authentic
images and transformed images provide the most comprehen-
sive reflection of our model’s real-world performance under
current conditions.

The results presented in Table V clearly demonstrate the
benefit of the augmentation strategy. Training with the gener-
ated dataset improved detection performance significantly in
these adverse weather conditions: the detection performance
of YOLOv9 model increased by 5.8% in mAP50 and 6.6%
in mAP50-95. Similarly, the detection performance of SA-
YOLO improved by 3.3% in mAP50 and 6.2% in mAP50-95
subsequent to augmentation. We also observed that SA-YOLO
consistently achieved higher mAP50 and mAP50-95 scores than
YOLOv9, both before and after augmentation. This superior
performance is attributed to the enhanced feature extraction
capabilities of SA-YOLO, proving particularly advantageous
when dealing with the blurred edges and reduced contrast
characteristics due to poor visibility.
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Notably, the SA-YOLO detector trained with our generative
method’s augmented data yielded substantial improvements
of 7.8% in mAP50 and 8.8% in mAP50-95 detection accuracy
compared to the baseline YOLOv9 operating on the original
dataset without augmentation. These findings confirm that our
image generation approach possesses strong generalization
capabilities, offering considerable potential for practical appli-
cation in enhancing object detection robustness under extreme
environmental conditions.

VI. CONCLUSION

In this work, we propose an image generation framework for
high-speed railway (HSR) foreign object intrusion detection
that effectively addresses the challenges of data scarcity and
small object detection. In terms of generation, the framework
integrates processes of generation, extraction, and integration
to produce true-to-reality images of foreign object intrusions
in HSR scenarios. Comparative experiments with power grid
foreign object intrusion data show that our generative method
is more effective in enhancing intrusion detection models,
improving mAP50 detection accuracy by 7.5% in the optimal
configuration. For detection, we use an improved SA-YOLO
model by integrating StarNet and Attention-based Dynamic
Sampling mechanisms to enhance small object detection
capabilities, successfully improving detection performance for
lightweight small objects such as plastic bags, kites, and
balloons. Ablation experiments indicate that our improved
StarNet backbone and A-DyS module can effectively improve
detection accuracy. Overall, the SA-YOLO model improves
detection performance, and this enhancement is further mag-
nified when using our generated data compared to the baseline
model. Comparative experiments with state-of-the-art detec-
tion models provide evidence of the generalizability of our
generative method in enhancing model performance, with our
approach improving detection accuracy by 2.4% compared to
the latest YOLOv12 with Real dataset. These results highlight
the potential advantages of our method in HSR foreign object
intrusion detection across various scenarios. Moreover, exper-
iments under adverse weather conditions demonstrate that our
generative method effectively improves detection accuracy,
underscoring its potential for application in extreme scenarios.

Despite promising results, this study has key limitations.
These limitations include a data collection focus primarily on
catenary system intrusions, which inadequately covers track
intrusions, and the detection model’s underperformance with
partially occluded objects. Additionally, the evaluation of gen-
eration effectiveness in our experiments remains insufficiently
comprehensive, and conducting large-scale manual evaluation
experiments requires enormous resources.

refore, further research will continue to expand data collec-
tion for diverse intrusion scenarios and further enhance model
robustness. Additionally, while our framework allows for some
annotation of foreign objects in intermediate image results,
automatically annotating the final generated outputs is not
yet feasible. Recent advances in multimodal large language
models and intelligent agent systems offer promising direc-
tions for addressing these limitations. Inspired by collaborative
agent frameworks [75] and multimodal foundation models for

autonomous driving [76], we will explore intelligent agent-
based approaches to expand the applicability of our method
in future work. Meanwhile, following the developments in
multimodal models for low-level visual perception [77], [78],
we will focus on adopting MLLM-based methods for more
comprehensive and automated quality assessment of generated
images.
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